南京大学学报(自然科学版) ›› 2018, Vol. 54 ›› Issue (2): 366–.

• • 上一篇    下一篇

 湘东北地区栗山铅锌铜多金属矿床的成因探讨:来自矿床地质、矿物学和硫同位素的证据

 郭 飞1,2,王智琳1,2*,许德如3,董国军4,宁钧陶4,王 展1,2,邓 腾3,于得水3,崔 宇5   

  • 出版日期:2018-03-31 发布日期:2018-03-31
  • 作者简介:1.有色金属成矿预测与地质环境监测教育部重点实验室(中南大学),长沙,410083;
    2.中南大学地球科学与信息物理学院,长沙,410083;
    3.中国科学院广州地球化学研究所,中国科学院矿物学与成矿学重点实验室,广州,510640;
    4.湖南省地质矿产勘查开发局402队,长沙,410004;
    5.湖南省地质测试研究院,长沙,410007
  • 基金资助:
     基金项目:国家自然科学基金(41672077,41302049),科技部国家重点研发计划(2016YFC0600401),湖南省自然科学基金(2016JJ3143)
    收稿日期:2018-01-15
    *通讯联系人,E-mail:wangzhilin1025@163.com

 Genesis of the Lishan Pb-Zn-Cu polymetallic deposit in northeastern Hunan province:evidences from the geology,mineralogy and sulfur isotopes

 Guo Fei1,2,Wang Zhilin1,2*,Xu Deru3,Dong Guojun4,Ning Juntao4,Wang Zhan1,2,Deng Teng3,Yu Deshui3,Cui Yu5   

  • Online:2018-03-31 Published:2018-03-31
  • About author: 1.Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring(Central South University),Ministry of Education;
    2.School of Geosciences and Info-Physics,Central South University;
    3.CAS Key Laboratory of Mineralogy and Metallogeny,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences;
    4.Team 402,Hunan Geology and Mineral Resources Exploration and Development Bureau;
    5.Hunan Province Geological Testing Institute

摘要:  湘东北大型栗山铅锌铜多金属矿床位于幕阜山岩体边部,矿体赋存于岩体及其内外接触带中的硅化构造角砾岩带内. 根据野外调查和显微岩(矿)相学观察,可将栗山矿床的主成矿期——热液成矿期划分为四个阶段:粗粒石英+萤石+绿泥石(ChlⅠ)+少量黄铁矿+黄铜矿阶段(Ⅰ)、石英+萤石+绿泥石(ChlⅡ)+黄铜矿+黄铁矿阶段(Ⅱ)、石英+萤石+绿泥石(ChlⅢ)+闪锌矿+黄铜矿+方铅矿阶段(Ⅲ)、细粒石英+少量黄铜矿+黄铁矿细脉阶段(Ⅳ). EPMA分析结果表明ChlⅠ为蠕绿泥石,ChlⅡ和ChlⅢ为鲕绿泥石-铁镁绿泥石. 根据绿泥石温度计,估算出阶段Ⅰ,Ⅱ,Ⅲ的成矿温度分别为239 ℃~280 ℃,221 ℃~261 ℃和212 ℃~238 ℃. 结合闪锌矿硫逸度计算,表明栗山矿床形成于中温、低氧逸度、低硫逸度的环境. 硫化物的δ34S(-4.7‰~1.5‰)变化较小且接近零值,表明成矿流体主要来源于岩浆热液. 通过与钦杭成矿带上典型的铅锌矿床对比,提出栗山矿床为与岩浆热液有关的中温热液充填交代成因.

Abstract:  The northeastern Hunan province is located at the central segment of the Jiangnan Orogen known as an economically important Au-Sb-W-Cu polymetallic metallogenic belt. Recently,several Co,Cu,Pb-Zn polymetallic deposits were discovered in northeastern Hunan Province,and they all have a close spatial relationship with the Yanshanian plutons. Among these deposits,the Lishan Pb-Zn-Cu polymetallic deposit occurs within the Mufushan pluton and its contact zone,with orebodies hosted within altered fracture zones. Based on the detailed field investigation and microscopic observation,the Lishan Pb-Zn-Cu polymetallic mineralization can be divided into two epochs:hydrothermal mineralization and supergene enrichment. Furthermore,hydrothermalism can further be subdivided into four stages:coarse quartz+fluorite+chlorite(ChlⅠ)+minor pyrite+chalcopyrite stage(I),quartz+fluorite+chlorite(ChlⅡ)+chalcopyrite+pyrite stage(Ⅱ),quartz+fluorite+chlorite(ChlⅢ)+sphalerite+chalcopyrite+galena stage(Ⅲ),and fine-grained quartz+minor pyrite+chalcopyrite stage(Ⅳ),from early to late. The EPMA analyses show that ChlⅠ belongs to ripidolite,and that ChlⅡand ChlⅢ are dominated by daphnite and brunsvigite. The empirical geothermometers of chlorite yield temperatures of 239 ℃~280 ℃(av. 255 ℃),221 ℃~261 ℃(av. 244 ℃)and 212 ℃~238 ℃(av. 231 ℃)for ChlⅠ,ChlⅡ and ChlⅢ,respectively,showing a decreasing trend. The estimated oxygen fugacities lgf(O2)and sulfur fugacities lgf(S2)are -39.90~-34.77 and 0.22~8.41,-42.29~-37.51 and -3.25~4.25,and -43.71~-39.08 and -2.88~1.47 for ChlⅠ,ChlⅡ and ChlⅢ,respectively,suggesting an environment of low oxygen fugacity and low sulfur fugacity. Sphalerite and galena yield δ34S values of -4.7‰ to 1.5‰,suggesting a predominant magmatic sulfur origin. Integrating the geological,mineralogical and sulfur isotopic data documented in this study,as well as the contrast with typical Pb-Zn deposits within the Qin-Hang metallogenic belt,we propose that the Lishan Pb-Zn-Cu polymetallic deposit formed from a hydrothermal system related to the Mufushan pluton,and is of medium-temperature hydrothermal fracture filling type.

 [1] 张九龄. 湖南桃林铅锌矿床控矿条件及成矿预测. 地质与勘探,1989,4(5):1-7. (Zhang J L. On the ore-controlling condition and metallo-genic prognosis of the Taolin Pb-Zn deposit,Hunan. Geology & Prospecting,1989,4(5):1-7. )
[2] 刘亮明,彭省临,吴延之. 湘东北地区脉型金矿床成矿构造特征及构造成矿机制. 大地构造与成矿学,1997,21(3):197-204. (Liu L M,Peng,S L,Wu Y Z. Features of metallogenic-tectonics and mechanism of tectonic-metallization for vein-type gold deposits in the north-eastern hunan,china. Geotectonica et Metallogenia,1997,21(3):197-204. )
[3] 符巩固,许德如,陈广浩等. 湘东北地区金成矿地质特征及找矿新进展. 大地构造与成矿学,2002,26(4):416-422. (Fu G G,Xu D R,Chen G H,et al. New recognitions on geological characteristics of gold ore deposits in northeastern Hunan Province,China and new prospecting advances. Geotectonic et Metallogenia,2002,26:416-422. )
[4] 肖拥军,陈广浩. 湘东北万古地区金矿床成矿构造特征的初步研究. 地质与勘探,2007,43(3):42-45. (Xiao Y J,Chen G H. Preliminary study on metallogenic structure features of gold deposit in wangu area,northeastern hunan province. Geology & Prospecting,2007,43(3):42-45. )
[5] 文志林,邓 腾,董国军等. 湘东北万古金矿床控矿构造特征与控矿规律研究. 大地构造与成矿学,2016,40(2):281-294. (Wen Z L,Deng T,Dong G J,et al. Study on the characters and rules of the ore-controlling structures of the Wangu gold deposit in northeastern Hunan Province. Geotectonica et Metallogenia,2016,40(2):281-294. )
[6] Deng T,Xu D R,Chi G X. Geology,geochronology,geochemistry and ore genesis of the Wangu gold deposit in northeastern Hunan Province,Jiangnan Orogen,South China. Ore Geology Reviews,2017,88:619-637.
[7] Xu D R,Deng T,Chi G X,et al. Gold mineralization in the Jiangnan Orogenic Belt of South China:Geological,geochemical and geochron-ological characteristics,ore deposit-type and geodynamic setting. Ore Geology Reviews,2017,88:565-618.
[8] Wang Z L,Xu D R,Chi G X,et al. Mineralogical and isotopic geochemical constraints on the genesis of the Jingchong Co-Cu polymetallic ore deposit in northeastern Hunan Province of South China. Ore Geology Reviews,2017,88:638-654.
[9] Wang L X,Ma C Q,Zhang C,et al. Genesis of leucogranite by prolonged fractional crystalli-zation:A study of the Mufushan complex,South China case. Lithos,2014,147-163.
[10] Cathelineau M,Nieva D. A chlorite solid solution geothermometer the Los Azufres(Mexico)geothermal system. Contributions to Mineralogy and Petrology,1985,91(3):235-244.
[11] Bourdelle F,Parra T,Chopin C,et al. A new chlorite geothermometer for diagenetic to low-grade metamorphic conditions. Contributions to Mineralogy and Petrology,2013,165(4):723-735.
[12] Wilkinson J J,Chang Z,Cooke D R,et al. The chlorite proximitor:A new tool for detecting porphyry ore deposits. Journal of Geochemical Exploration,2015,152:10-26.
[13] 郭国林,刘晓东,潘家永等. 302铀床绿泥石特征及其与铀成矿的关系. 铀矿地质,2012,28(3):35-41. (Guo G L,Liu X D,Pan J Y,et al. Character of Chlorite and Its Relationship to Uranium Mineralization in Uranium Deposit No. 302. Uranium Geology,2012,28(3):35-41. )
[14] 杨 超,唐菊兴,宋俊龙等 西藏拿若斑岩型铜(金)矿床绿泥石特征及其地质意义. 地质学报,2015,89(5):856-872. (Yang C,Tang J X,Song J L,et al. Chlorite Characteristic of the Naruo Porphyry Cu(Au)Deposit in Tibet and Its Geological Significance. Acta Geologica Sinica,2015,89(5):856-872. )
[15] 刘英俊,曹励明,李兆麟. 元素地球化学. 北京:科学出版社,1984,548. (Liu Y J,Cao L M,Li Z L. Elemental geochemistry. Beijing:Science Press,1984,548. )
[16] 涂光炽,高振敏. 分散元素成矿机制研究获重大进展. 中国科学院院刊,2003,5:358-361. (Tu G Z,Gao Z M. Great progress in the study of the metallogenic mechanism of dispersed elements. Bulletin of Chinese Academy of Sciences,2003,5:358-361. )
[17] Ye L,Cook N J,Ciobanu C L,et al. Trace and minor elements in sphalerite from base metal deposits in South China:a LA-ICPMS study. Ore Geology Reviews,2011,39(4):188-2I7.
[18] Wang X L,Zhou J C,Qiu J S,et al. Geochemistry of the Meso-to Neoproterozoic basic-acid rocks from Hunan Province,South China:implications for the evolution of the western Jiangnan orogen. Precambrian Research,2004,135(1-2):79-103.
[19] Xu D R,Gu X X,Li P C,et al. Mesoproterozoic-Neoproterozoic transition:Geochemistry,provenance and tectonic setting of clastic sedimentary rocks on the SE margin of the Yangtze Block,South China. Journal of Asian Earth Sciences,2007,29(5):637-650.
[20] 李鹏春. 湘东北地区显生宙花岗岩岩浆作用及其演化规律. 博士学位论文. 广州:中国科学院广州地球化学研究所,2006. (Li P C. Magmatism of phanerzoic granitoids in southeastern Hunan Province,China and it evolution regularity. Ph. D. Dissertation. Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,2006. )
[21] Li X,Huang C,Wang C,et al. Genesis of the Huangshaping W-Mo-Cu-Pb-Zn polymetallic deposit in Southeastern Hunan Province,China:Constraints from fluid inclusions,trace elements,and isotopes. Ore Geology Reviews,2016,79:1-25.
[22] 湖南省地质调查院. 区域调查报告,长沙市幅. 2002. (Hunan Institute of geological survey. Regional survey report,Changsha City. 2002. )
[23] 许德如,王 力,李鹏春等. 湘东北地区连云山花岗岩的成因及地球动力学暗示. 岩石学报,2009,25(5):1056-1078. (Xu D R,Wang L,Li P C,et al. Petrogenesis of the Lianyunshan granites in northeastern Hunan Province,South China,and its geodynamic implication. Acta Petrologica Sinica,2009,25(5):1056-1078. )
[24] Li C,Love G D,Lyons T W,et al. A stratified redox model for the Ediacaran ocean. Science,2010,328(5974):80-83.
[25] Foster M D. Interpretation of the composition and a classification of the chlorites. U. S. Geological Survey Professional Paper 414-A,1962,1-33.
[26] Deer W A,Howie R A,Zussman J. Rock-forming Minerals,Orthosilicates. Longman,London and New York,1982,444-465.
[27] Hillier S,Velde B. Octahedral occupancy and the chemical composition of diagenetic(low-temperature)chlorites. Clay Minerals,1991,26:149-168.
[28] Zang W,Fyfe W S. Chloritization of the hydrothermally altered bedrock at the Igarapé Bahia gold deposit,Carajás,Brazil Mineralium Deposita,1995,30(1):30-38.
[29] Inoue A,Meunier A,Patrier-Mas P,et al. Application of chemical geothermometry to low-temperature trioctahedral chlorites. Clays and Clay Minerals,2009,57(3):371-382.
[30] Laird J. Chlorites:metamorphic petrology. Reviews in Mineralogy and Geochemistry,1988,19(1):405-453.
[31] Dora M L,Randive K R. Chloritisation along the 741 Thanewasna shear zone,Western Bastar Craton,Central India:Its genetic linkage to Cu-Au mineralisation. Ore Geology Reviews,2015,70:151-172.
[32] Wiewióra A,Weiss Z. Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition:II. The chlorite group. Clay Minerals,1990,25(1):83-92.
[33] 刘铁庚,叶 霖,周家喜等. 闪锌矿的Fe,Cd关系随其颜色变化而变化. 中国地质,2010,37(5):1457-1468. (Liu T G,Lin Y E,Zhou J X,et al. The variation of Fe and Cd correlativity in sphalerite with the variation of the mineral color. Geology in China,2010,37(5):1457-1468. )
[34] Basta F F,Maurice A E,Fontboté L,et al. Petrology and geochemistry of the banded iron formation(BIF)of Wadi Karim and Um Anab,Eastern Desert,Egypt:Implications for the origin of Neoproterozoic BIF. Precambrian Research,2011,187(3):277-292.
[35] Inoue A. Formation of clay minerals in hydrothermal environments ∥ Velde B. Origin and mineralogy of clays. Berlin:Springer,1995:268-329.
[36] Jowett E C. Fitting iron and magnesium into the hydrothermal chlorite geothermometer ∥ GAC/MAC/SEG Joint Annual Meeting(Toronto,May 27-29),Program with Abstracts,1991,16:A62.
[37] Kranidiotis P,MacLean W H. Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit,Matagami,Quebec. Economic Geology,1987,82(7):1898-1911.
[38] Cathelineau M. Cation site occupancy in chlorites and illites as function of temperature. Clay Minerals,1988,23(4):471-485.
[39] Battaglia S. Applying X-ray geothermometer diffraction to a chlorite. Clays and Clay Minerals,1999,47(1):54-63.
[40] Nieto F. Chemical composition of metapelitic chlorites:X-ray diffraction and optical property approach. European Journal of Mineralogy,1997,9:829-842.
[41] Walshe J L. A six-component chlorite solid solution model and the conditions of chlorite formation in hydrothermal and geothermal systems. Economic Geology,1986,81(3):681-703.
[42] 张 伟,张寿庭,曹华文等. 滇西小龙河锡矿床中绿泥石矿物特征及其指示意义. 成都理工大学学报(自然科学版),2014,41(3):318-328. (Zhang W,Zhang S T,Cao H W,et al. Characteristics of chlorite minerals from Xiaolonghe tin deposit in West Yunnan,China and their geological implications. Journal of Chengdu University of Technology(Science and Technology Edition),2014,41(3):318-328. )
[43] 郑作平,陈繁荣,于学元. 八卦庙金矿床的绿泥石特征及成岩成矿意义. 矿物学报,1997,17(1):100-106. (Zheng Z P,Cheng F R,Yu X Y. Characteristics of chlorite in Baguamaio gold deposit and their geological significance. Acta Mineralogica Sinica,1997,17(1):100-106. )
[44] 余琼华,李若黔,冯祖同. 南岭地区铅锌矿床中闪锌矿的标型特征. 全国第一届矿相学学术讨论会矿相学论文集,北京:地质出版社,1987:80-85. (Yu Q H,Li R C,Feng Z T. The typomorphic characteristics of Sphalerite in the lead-zinc deposits in the Nanling area ∥ The First Mine Photo Academic Symposium Collection. Beijing:Geological Publishing House,1987:80-85. )
[45] Barton P B,Toulmin P I E. Phase relations involving sphalerite in the Fe-Gn-S system. Economic Geology,1966,61(5):815-849.
[46] Craig J R,Barton P B. Thermochemical approximations for sulfosalts. Economic Geology,1973,68(4):493-506.
[47] Czamanske G K. The FeS content of sphalerite along the chalcopyrite-pyrite-bornite sulfur fugacity buffer. Economic Geology,1974,69(8):1328-1334.
[48] Barton M D,Kieft C,Burke L A J,et al. Uytenbogaardtite,a new silver-gold sulfide. Canadian Mineralogist,1978,16(4):651-659.
[49] Warmada I W,Lehmann B. Polymetallic sulfides and sulfosalts of the Pongkor epithermal gold_silver deposit,West Java,Indonesia. The Canadian Mineralogist,2003,41(4):185-200.
[50] 毛景文,陈懋弘,袁顺达等. 华南地区钦杭成矿带地质特征和矿床时空分布规律. 地质学报,2011,85(5),636-658. (Mao J W,Chen M H,Yuan S D,et al. Geological characteristics of the Qinhang(or Shihang)metallogenic belt in South China and spatial-temporal distribution regularity of mineral deposits. Acta Geologica Sinica,2011,85,636-658. )
[51] Mao J W,Cheng Y B,Chen M H,et al. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Mineralium Deposita,2013,48:267-294.
[52] Jiang Y H,Jiang S Y,Dai B Z,et al. Middle to late Jurassic felsic and mafic magmatism in southern Hunan province,southeast China:Implications for a continental arc to rifting. Lithos,2009,107:185-204.
[53] Huang J C,Peng J T,Yang J H,et al. Precise zircon U-Pb and molybdenite Re-Os dating of the Shuikoushan granodiorite-related Pb-Zn mineralization,southern Hunan,South China. Ore Geology Reviews,2015,71:305-317.
[54] Zhao P L,Yuan S D,Mao J W,et al. Geochronological and petrogeochemical constraints on the skarn deposits in Tongshanling ore district,southern Hunan Province:Implications for Jurassic Cu and W metallogenic events in South China. Ore Geology Reviews,2016,78:120-137.
[55] Hu X L,Gong Y J,Pi D H,et al. Jurassic magmatism related Pb-Zn-W-Mo polymetallic mineralization in the central Nanling Range,South China:geochronologic,geochemical,and isotopic evidence from the Huangshaping deposit. Ore Geology Reviews,2017,877-895.
[56] 路远发,马丽艳,屈文俊等. 湖南宝山铜-钼多金属矿床成岩成矿的U-Pb和Re-Os同位素定年研究. 岩石学报,2006,22(10):2483-2492. (Lu Y F,Ma L Y,Qu W J,et al. U-Pb and Re-Os isotopegeochronology of Baoshan Cu-Mo polymetallic ore deposit in Hunan province. Acta Petrologica Sinica,2006,n22:2483-2492. )
[57] 雷泽恒,陈富文,陈郑辉等.,黄沙坪铅锌多金属矿成岩成矿年龄测定及地质意义. 地球学报,2010,31(4):532-540. (Lei Z H,Chen F W,Chen Z H,et al. Petrogenetic and metallogenic age determination of the Huangshaping lead-zinc polymetallic deposit and its geological signi-ficance. Acta Geoscientica Sinica,2010,31:532-541. )
[58] 袁顺达. 湘南铜山岭矿田玉龙矽卡岩型钼矿床辉钼矿Re-Os测年. 全国青年地质大会,2013,59:393-394. (Yuan S D. Molybdenite Re-Os dating for the Yulong skarn Mo deposit in Tongshanling orefield,southern Hunan. National Youth Geological Conference. 2013,59(Supp):393-394. )
[59] 叶 霖,高 伟,杨玉龙等. 云南澜沧老厂铅锌多金属矿床闪锌矿微量元素组成. 岩石学报,2012,28(5):62-72. (Ye L,Gao W,Yang Y L,et al. Trace elements in sphalerite in Laochang Pb-Zn polymetallic deposit,Lancang,Yunnan Province. Acta Petrologica Sinica,2012,28(5):1362-1372. )
[60] 张术根. 泗顶铅锌矿田闪锌矿的标型特征研究. 广西地质,1991,(3):39-48. (Zhang S G. A study on the typomorphic characteristics of sphalerite from siding lead-zinc orefield,Guangxi. Geology of Guangxi,1991,(3):39-48. )
[61] 代堰锫,余心起,吴淦国等. 北武夷蔡家坪铅锌矿床硫化物特征、矿床成因类型及成矿时代. 地学前缘(中国地质大学(北京);北京大学),2011,18(2):321-338. (Dai Y P,Yu X Q,Wu G G,et al. Characteristics of sulfide minerals,genetic type and metallogenic epoch of the Caijiaping lead-zinc deposit,North Wuyi Area,Jiangxi Province. Earth Science Frontiers,2011,18(2):321-338. )
[62] 李 徽. 凤县铅洞山铅锌矿床硫化矿物标型特征及其成因探讨. 地质与勘探,1986,22:36-41. (Li W. Typomorphic characteristics and genesis of Fengxian mountain lead-zinc deposit of lead sulfide minerals. Geology and Prospecting,1986,22:36-41. )
[63] Ohmoto H,Rye R. Isotopes of sulfur and carbon∥ Barnes H L. Geochemistry of Hydrothermal ore Deposits. 2nd Edition. New York,NY,USA:John Wiley and Sons,1979:509-567.
[64] Hoefs J. Stable Isotope Geochemistry. 4th Edition. Berlin Springer Verlag,1997:1-201.
[65] 罗献林. 论湖南前寒武系金矿床的成矿物质来源. 桂林冶金地质学院学报,1990,10(1):13-26. (Luo X L. The source of ore-forming substances of Precambrian gold deposits in Hunan Province. Journal of Guilin college of Geology,1990,10(1):13-26. )
[66] 刘亮明,彭省临,吴延之. 湘东北地区脉型金矿床的活化转移. 中南工业大学学报(自然科学版),1999,30(1):4-7. (Liu L M,Peng S L,Wu Y Z. Genetic features forming vein type gold deposits in northeastern Hunan. Journal of Central South University of Technology(Natural Science Edition),1999,30(1):4-7).
[67] 息朝庄,戴塔根,刘悟辉. 湖南黄沙坪铅锌多金属矿床铅、硫同位素地球化学特征. 地球学报,2009,30(1):88-94. (Lead and sulfur isotope geochemical of the Huangshaping Lead-Zinc deposit,Hunan Province. Acta Geoscientia Sinica,2009,30(1):88-94. )
[68] 祝新友,王京彬,王艳丽等. 湖南黄沙坪W-Mo-Bi-Pb-Zn多金属矿床硫铅同位素地球化学研究. 岩石学报,2012,28(12):3809-3822. (Zhu X Y,Wang J B,Wang Y L,et al. Sulfur and lead isotope constraints on ore formation of the Huangshaping W-Mo-Bi-Pb-Zn polymetallic ore deposit,Hunan Province,South China. Acta Petrologica Sinica,2012,28(12):3809-3822)
[69] Ding T,Ma D S,Lu J J,et al. S,Pb,and Sr isotope geochemistry and genesis of Pb-Zn mineralization in the Huangshaping polymetallic ore deposit of southern Hunan Province,China. Ore Geology Reviews,2016,77:117-132.
[70] 胡祥昭,彭恩生,孙振家. 湘东北七宝山铜多金属矿床地质特征及成因探讨. 大地构造与成矿学,2000,24(4):365-370. (Hu X Z,Peng E S,Sun Z J. Geological characteristics and genesis of Qibaoshan Cu-polymetallic deposit. Geotectonic et Metallogenia,2000,24(4):365-370. )
[71] 易 慧,徐素云. 铜山岭矿田庵堂岭铅锌矿床地球化学特征分析. 地质与勘探,2006,42(4):20-24. (Yi H,Xu S Y. Geochemical characteristics of antangling lead-zinc deposit in the tongshanling orefield. Geology & Prospecting,2006,42(4):20-24. )
[72] 蔡应雄,谭娟娟,杨红梅等. 湘南铜山岭铜多金属矿床成矿物质来源的S、Pb、C同位素约束. 地质学报,2015,89(10):1792-1803. (Cai Y X,Tan J J,Yang H M,et al. The origin of ore-forming material in the tongshanling Cu-polymetallic ore field in Hunan province:Constrains from S-Pb-C isotopes.Acta Geologica Sinica,2015,89(10):1792-1803. )
[73] Tong Q M,Wu R H,Peng J L,et al. Metallogeny of W,Sn,Pb-Zn,Au,and Ag deposits in the Chenxian-Guiyang Region,South Hunan,China. Beijing:Geological Publishing House,1995,1-98.
[74] 姚军明,华仁民,林锦富. 湘东南黄沙坪花岗岩LA-ICPMS锆石U-Pb定年及岩石地球化学特征. 岩石学报,2005,21(3):688-696. (Yao J M,Hua R M,Lin J F. Zircon LA-ICPMS U-Pb dating and geochemical characteristics of Huangshaping granite in southeast Hunan province,China. Acta Petrologica Sinica,2005,21(3):688-696. )
[75] 鲍 谈,叶 霖,杨玉龙等. 湖南宝山Pb-Zn多金属矿床硫同位素地球化学特征及其地质意义. 矿物学报,2014,34:261-266. (Bao T,Ye L,Yang Y L,et al. Geochemical characteristics and geological significance of sulfur isotopes in the Pb-Zn polymetallic deposit,Baoshan,Hunan. Acta Mineralogica Sinica,2014,34:261-266. )
[76] 谢银财,陆建军,杨 平等. 湘南宝山铅锌矿床硫、铅、碳、氧同位素特征及成矿物质来源. 矿床地质,2015,34(2):333-351. (Xie Y C,Lu J J,Yang P,et al. S,Pb,C and O isotope Characteristics and sources of metallogenic materials of Baoshan Pb-Zn deposit,southern Hunan Province. Mineral Deposit,2015,34(2):333-351. )
[77] Li X F,Sasaki M. Hydrothermal alteration and mineralization of middle Jurassic Dexing porphyry Cu-Mo deposit,southeast China. Resource Geology,2007,57:409-426.
[78] 杨 波,水新芳,赵元艺等. 江西德兴朱砂红斑岩铜矿床H-O-S-Pb同位素特征及意义. 地质学报,2016,90(1):126-138. (Yang B,Shui X F,Zhao Y Y,et al. H-O-S-Pb isotopic charac-teristics of the zhushahong porphyry copper deposit in Dexing,Jiangxi Province,and significance. Journal of Geology,2016,90(1):126-138. )
[79] 刘姤群,杨世义,张秀兰等. 粤北大宝山多金属矿床成因的初步探讨. 地质学报,1985,1:49-94. (Liu H Q,Yang S Y,Zhang X L,et al. A preliminary study on the genesis of the Dabaoshan polymetallic deposit in northern Guangdong. Journal of Geology,1985,1:49-94. )
[80] 徐文炘,李 蘅,陈民扬等. 广东大宝山多金属矿床成矿物质来源同位素证据. 地球学报,2008,29(6):684-690. (Xu W X,Li H,Cheng M Y,et al. Isotopic evidence of material sources of the Dabaoshan polymetallic deposit. Acta Geoscientia Sinica,2008,29(6):684-690. )
[81] 刘 伟. 水口山Pb-Zn-Au矿田含矿流体的性质、来源及其环流历程. 大地构造与成矿学,1994,18:209-218. (Liu W. The properties,sources and circulation history of the ore bearing fluid in the Pb-Zn-Au ore field of the Shuikoushan. Geotectonica et Metallogenia. 1994,18:209-218. )
[82] 路 睿. 湖南省常宁市水口山铅锌矿床地质特征及成因机制探讨. 硕士学位论文,南京:南京大学,2013. (Lu R. Geological characteristics and genesis mechanism of the Shuikoushan Pb-Zn deposit in Changning City,Hunan Province. Master Dissertation. Nanjing:Nanjing University,2013. )
[83] zen Y,Arlk F. S,O and Pb isotopic evidence on the origin of the inkaya(Simav-Kütahya)Cu-Pb-Zn-(Ag)Prospect,NW Turkey. Ore Geology Reviews,2015,70:262-280.
[84] Seal R R. Sulfur isotope geochemistry of sulfide minerals. Reviews in Mineralogy and Geochemistry,2006,61(1):633-677.
[85] Zhou X M,Sun T,Shen W Z,et al. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:a response to tectonic evolution. Episodes,2006,29:26-33.
[86] Li Z X,Li X H. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China:A flat-slab subduction model. Geology,2007,35(2):179-182.
[87] Rudnick R L,Gao S. Composition of the Continental Crust ∥ Heinrich D H,Karl K T. Treatise on Geochemistry:The Crust,vol. 3. New York,NY,USA:Elsevier Pergamon,2004:1-64.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!