南京大学学报(自然科学版) ›› 2018, Vol. 54 ›› Issue (2): 351–.

• • 上一篇    下一篇

 安徽省池州市马头钼矿床成矿流体特征和矿床成因

顾建峰1,2,倪 培1*,李文生1,王国光1,潘君屹1,刘 政1   

  • 出版日期:2018-03-31 发布日期:2018-03-31
  • 作者简介:1.内生金属矿床成矿机制研究国家重点实验室,南京大学地球科学与工程学院,南京,210023;
    2.江苏省有色金属华东地质勘查局,南京,210007
  • 基金资助:
    基金项目:国家重点研发计划(2016YFC0600206)
    收稿日期:2018-01-08
    *通讯联系人,E-mail:peini@nju.deu.cn

The characteristics of ore-forming fluid and genesis of the Matou Mo deposit,Chizhou,Anhui province

 Gu Jianfeng1,2,Ni Pei1*,Li Wensheng1,Wang Guoguang1,Pan Junyi1,Liu Zheng1   

  • Online:2018-03-31 Published:2018-03-31
  • About author:1.State Key Laboratory for Mineral Deposits Research,Institute of Geo-Fluids,School of Earth Sciences and Engineering,Nanjing University,Nanjing,210023,China;
    2.East China Geological Exploration Bureau of Nonferrous Metals in Jiangsu Province,Nanjing,210007,China

摘要:  安徽马头钼矿床位于长江中下游成矿带的安庆-贵池矿集区内,矿体主要赋存在花岗闪长斑岩中,其矿化类型由浅部石英脉型和深部细脉浸染型矿体组成. 其中,浅部蚀变以绢英岩化和青磐岩化为主,钾化和碳酸盐化相对较弱,深部蚀变主要为强钾化和少量硅化. 成矿流体研究结果表明,该矿床浅部主要为Ⅰ型水溶液包裹体,而深部则包含Ⅰ型水溶液包裹体、Ⅱ型富CO2包裹体和Ⅲ型含CO2包裹体. 浅部Ⅰ型包裹体均一温度集中在224 ℃~283 ℃,盐度在3.8 wt.%~7.6 wt.% NaCl之间;深部Ⅰ型和Ⅱ型包裹体均一到液相,其均一温度分别集中在263 ℃~316 ℃和311 ℃~331 ℃,盐度分别为5.1 wt.%~10.3 wt.% NaCl和0.6 wt.%~2.0 wt.% NaCl,Ⅲ型包裹体均一温度为335 ℃~362 ℃,盐度为2.7 wt.%~6.7 wt.% NaCl. 深部大量Ⅰ型与Ⅱ型、Ⅲ型包裹体共生在同一石英颗粒中,均一温度相近,均一方式不同,表明深部细脉浸染型成矿作用过程中可能有流体不混溶作用发生,导致CO2逃逸,流体性质改变致使Mo等成矿物质的沉淀. 本研究发现NaCl-H2O-CO2体系流体不混溶为马头钼矿床属于斑岩型矿床提供了新的地质地球化学证据.

Abstract:  The Matou Mo deposit is located in the Anqing-Guichi ore cluster area of the Middle-Lower Yangtze Valley metallogenic belt. The mineralization types are divided into shallow quartz vein type and deep veinlet disseminated type. The alteration types in shallow parts mainly include phyllic alteration,propylitization,with minor potassic alteration and carbonatation. The deep parts are mainly composed of intense potassic alteration and silicification. The ore minerals in the Matou Mo deposit are mainly molybdenite and chalcopyrite,with a small amount of scheelite,magnetite,pyrrhotite,sphalerite,and galena. Gangue minerals are mainly K-feldspar,quartz,sericite,and calcite. Three main types of inclusions can be identified in the hydrothermal veins:two-phase aqueous inclusions(type Ⅰ),two-phase CO2 rich inclusions(Type Ⅱ)and three-phase CO2-bearing inclusions(Type Ⅲ). The dominant fluid inclusions in the shallow part are type Ⅰ,while deep quartz veins contain type Ⅰ,Ⅱ and Ⅲ inclusions. Type Ⅰ inclusions in the shallow quartz vein exhibit low to moderate salinities ranging from 3.8 wt.% to 7.6 wt.% NaCl equivalent,and homogenization temperatures from 224 ℃ to 283 ℃. Type Ⅰ and coexisting type Ⅱ inclusions in deep veinlet disseminated mineralization show higher homogenization temperatures ranging from 263 ℃ to 316 ℃ and from 311 ℃ to 331 ℃,with salinities of 5.1 wt.% to 10.3 wt.% and 0.6 wt.% to 2.0 wt.% NaCl equivalent,respectively. Type Ⅲ inclusions in deep veinlet disseminated mineralization yield homogenization temperatures of 335 ℃ to 362 ℃,with salinities 2.7 wt.% to 6.7 wt.% NaCl equivalent. The ore-forming fluid of shallow quartz vein orebody is NaCl-H2O system,while the ore-forming fluid in deep mineralization belongs to NaCl-H2O-CO2 system. A large number of type Ⅰ,type Ⅱ and type Ⅲ inclusions coexist in the same quartz from the deep mineralization. Their similar homogenization temperature indicated that the fluid immiscibility may occurred in the deep part. The dramatic changes in chemical properties of fluids resulted from immiscibility lead to the decomposition of complex and molybdenite precipitation. The pressures of mineralization were 65 MPa~90 MPa,obtained from the microthermometric data of type Ⅰ and Ⅱ fluid inclusions from the deep part,which is corresponding to the depth of 2.4 km to 3.3 km. Alteration mineralogy research shows that the Matou Mo deposit exerts typical porphyry deposit alteration characteristics,with potassic alteration,silicified zone and sericitic zone. The identification of fluid immiscibility during mineralization provides new evidence for ore genesis and precipitation mechanism of Matou deposit.

 [1] 霍明宇,王 莹,解国爱等. 安徽池州马头钼矿容矿构造特征及构造应力场浅析. 地质学刊,2013,37(2):284-291. (Huo M Y,Wang Y,Xie G A,et al. Analyses on hosting structure properties and tectonic stress fields of Matou copper-molybdenum mine in Chizhou of Anhui. Journal of Geology,2013,37(2):284-291)
[2] 赵 超,谢兴楠,柳建新等. 安徽省池州市马头斑岩型铜钼矿床特征、成因和找矿方向. 中国有色金属学报,2013,23(12):3503-3517. (Zhao C,Xie X N,Liu J X,et al. Characteristics,origin and future prospecting of porphyry copper-molybdenum deposit at Matou of Chizhou City,Anhui Province,China. The Chinese Journal of Nonferrous Metals,2013,23(12):3503-3517.)
[3] 杨贵才,葛良胜,路英川等. 2014. 安徽省池州地区马头钼矿辉钼矿Re-Os年龄及其地质意义. 矿物岩石,2014,34(1):30-35. (Yang G C,Ge L S,Lu Y C,et al. Re-Os isotopic dating of molybdenite from the Matou lindgrenite deposit from Chizhou area in the south of Anhui province and its geological implications. Journal of Mineralogy and Petrology,2014,34(1):30-35.)
[4] 宋国学,秦克章,李光明. 长江中下游池州地区矽卡岩-斑岩型W-Mo矿床流体包裹体与H、H、S同位素研究. 岩石学报,2010,26(9):2768-2782. (Song G X,Qin K Z,Li G M. Study on the fluid inclusions and S-H-O isotopic compositions of skarn-porphyry-type W-Mo deposits in Chizhou area in the Middle-Lower Yangtze Valley. Acta Petrologica Sinica,2010,26(9):2768-2782.)
[5] 苏 阳,张 婷. 池州马头铜钼矿成矿流体包裹体研究. 西部探矿工程,2016,28(2):113-116. (Su Y. Zhang T. Study on the fluid inclusions of Matou Cu-Mo deposits in Chizhou area. West-china Exploration Engineering,2016,28(2):113-116.)
[6] 顾连兴,徐克勤. 长江中、下游断裂拗陷带的构造发展与成矿作用. 桂林理工大学学报,1987,7(4):3-11. (Gu L X,Xu K Q,The tectonic development and related metallogenesis of the lower Yangtze fault depression belt. Journal of Guilin College of geology,1987,7(4):3-11.)
[7] 周泰禧,李彬贤,张 巽等. 扬子地块北缘贵池地层区沉积地层的稀土元素组成及其地质意义. 中国稀土学报,1996,14(3):254-260. (Zhou T X,Li B X,Zhang X,et al. REE compositions of sedimentary strata of Guichi stratigraphic region,northern margin of Yangtze block and its geologic significance. Journal of the Chinese rare earth society,1996,14(3):254-260.)
[8] 王伟华. 安徽池州马头钼矿床特征及找矿思路. 地质学刊,2011,35(3):311-316. (Wang W H. On Matou Cu-Mo deposit properties and ore prospecting thoughts in Chizhou of Anhui. Journal of Geology,2011,35(3):311-316)
[9] Hall D L,Sterner S M,Bodnar R J. Freezing point depression of NaCl-KCl-H2O. Economic Geology,1988,83(1):197-202.
[10] Roedder E. Fluid inclusions. Mineralogical Society of America,1984,12:1-644.
[11] 卢焕章,范宏瑞,倪 培等. 流体包裹体. 北京:科学出版社,2004,1-487. (Lu H Z,Fan H R,Ni P,et al. Fluid inclusion. Beijing:Science Press,2004,1-487.)
[12] Roedder E. Fluid inclusion studies on the porphyry-type ore deposits at Bingham,Utah,Butte,Montana,and Climax,Colorado. Economic Geology,1971,66(1):98-118.
[13] Drummond S E,Ohmoto H. Chemical evolution and mineral deposition in boiling hydrothermal systems. Economic Geology,1985,80(1):126-147.
[14] Heinrich C A,Günther D,Audétat A,et al. Metal fractionation between magmatic brine and vapor,determined by microanalysis of fluid inclusions. Geology,1999,27(8):755-758.
[15] Driesner T,Heinrich C A. The system H2O-NaCl. Part Ⅰ:Correlation formulae for phase relations in temperature-pressure-composition space from 0 to 1000 ℃,0 to 5000 bar,and 0 to 1 X NaCl. Geochimica et Cosmochimica Acta,2007,71(20):4880-4901.
[16] Klemm L M,Pettke T,Heinrich C A,et al. Hydrothermal evolution of the El Teniente deposit,Chile:porphyry Cu-Mo ore deposition from low-salinity magmatic fluids. Economic Geology,2007,102(6):1021-1025.
[17] Klemm L M,Pettke T,Heinrich C A. Fluid and source magma evolution of the Questa porphyry Mo deposit,New Mexico,USA. Mineralium Deposita,2008,43(5):533-552.
[18] Duan Z,Moller N,Weare J H. Equation of state for the NaCl-H2O-CO2 system:prediction of phase equilibria and volumetric properties. Geochimica et Cosmochimica Acta,1995,59(14):2869-2882
[19] Ni P,Pan J Y,Wang G G,et al. A CO2-rich porphyry ore-forming fluid system constrained from a combined cathodoluminescence imaging and fluid inclusion studies of quartz veins from the Tongcun Mo deposit,South China. Ore Geology Reviews,2017,81(2):856-870.
[20] Yang Y F,Chen Y J,Li N,et al. Fluid inclusion and isotope geochemistry of the Qian’echong giant porphyry Mo deposit,Dabie Shan,China:A case of NaCl-poor,CO2-rich fluid systems. Journal of Geochemical Exploration,2013,124,1-13.
[21] Wang P,Chen Y J,Fu B,et al. Fluid inclusion and H-O-C isotope geochemistry of the Yaochong porphyry Mo deposit in Dabie Shan,China:A case study of porphyry systems in continental collision orogens. International Journal of Earth Sciences,2014,103(3):777-797.
[22] Ridley J R,Diamond L W. Fluid chemistry of orogenic lode gold deposits and implications for genetic models. Reviews in Economic Geology,2000,13(1998):146-162.
[23] Bodnar R J,Lecumberisanchez P,Moncada D,et al. Fluid inclusions in hydrothermal ore deposits. Treatise on Geochemistry,2013,13(3):119-142.
[24] Xu Y F,Ni P,Wang G G,et al. Geology,fluid inclusion and stable isotope study of the Huangshan orogenic gold deposit:Implications for future exploration along the Jiangshan-Shaoxing fault zone,south china. Journal of Geochemical Exploration,2016,171,37-54.
[25] Diamond L W. Introduction to phase relations of CO2-H2O fluid inclusions. Fluid Inclusions in Minerals:Methods and Application. Blacksburg:Virginia Tech,1994,101-158.
[26] Brown P E,Hagemann S G. Macflincor and its application to fluids in archean lode-gold deposits. Geochimica et Cosmochimica Acta,1995,59(19):3943-3952.
[27] Bowers T S,Helgeson H C. Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O-CO2-NaCl on phase relations in geologic systems;metamorphic equilibria at high pressures and temperatures. Geochimica et Cosmochimica Acta,1983,47(7):1247-1275.
[28] Ulrich T,Gunther D,Heinrich C A. The evolution of a porphyry Cu-Au deposit,based on LA-ICP-MS analysis of fluid inclusions:Bajo de la Alumbrera,Argentina. Economic Geology,2001,96(8):1743-1774.
[29] Ulrich T,Mavrogenes J. An experimental study of the solubility of molybdenum in H2O and KCl-H2O solutions from 500 ℃ to 800 ℃,and 150 to 300 MPa. Geochimica et Cosmochimica Acta,2008,72(9):2316-2330.
[30] 李 诺,陈衍景,赖 勇等. 内蒙古乌努格吐山斑岩铜钼矿床流体包裹体研究. 岩石学报,2007,23(9):2177-2188. (Li N,Chen Y J,Lai Y et al. Fluid inclusion study of the Wunugetushan porphyry Cu-Mo deposit,Inner Mongolia. Acta Petrologica Sinica,2007,3(9):2177-2188.)
[31] 南征兵,唐菊兴,李葆华. 纳日贡玛斑岩铜钼矿成矿元素沉淀机制探讨. 矿业研究与开发,2008,28(2):1-2. (Discussion on the precipitation mechanism of ore-forming elements in Narigongma porphyry copper-molybdenum deposit. Mining Research and Development,2008,28(2):1-2.)
[32] 王 运,陈衍景,马宏卫等. 河南省商城县汤家坪钼矿床地质和流体包裹体研究. 岩石学报,2009,25(2):468-478. (Wang Y,Chen Y J,Ma H W et al. Study on ore geology and fluid inclusions of the Tangjiaping Mo deposit,Shangcheng County,Henan Province. Acta Petrologica Sinica,2009,25(2):468-478.)
[33] Carten R B,White W H. Stein H J. High-grade granite-related molybdenum systems:Classifi-cation and origin ∥ Kirkham R V,Sinclair W D,Thorpe R I,et al. Mineral deposit modeling. Geological Association of Canada,Special Paper,1993,40:521-554.
[34] Lowell J D,Guilbert J M. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Economic Geology,1970,65(4):373-408.
[35] 侯增谦,潘小菲,杨志明等. 初论大陆环境斑岩铜矿. 现代地质,2007,21(2):332-351. (Hou Z Q,Pan X F,Yang Z M,et al. Porphyry Cu-(Mo-Au)deposits no related to oceanic-slab subduction:Examples from Chinese porphyry deposits in continental settings. Geoscience,2007,21(2):332-351.)
[36] Wang G G,Ni P,Yao J et al. The link between subduction-modified lithosphere and the giant Dexing porphyry copper deposit,South China:Constraints from high-Mg adakitic rocks. Ore Geology Reviews,2015,67:109-126.
[37] Ni P,Wang G G,Yu W et al. Evidence of fluid inclusions for two stages of fluid boiling in the formation of the giant Shapinggou porphyry Mo deposit,Dabie Orogen,Central China. Ore Geology Reviews,2015,65(4):1078-1094.
[38] 赵 超,谢兴楠,马 春等. 安徽池州马头钼矿床锆石年龄与辉钼矿Re-Os同位素测定的地质意义. 中国有色金属学报,2015,25(12):3461-3472. (Zhao C,Xie X N,Ma C et al. Geological significance of zircon age and Re-Os isotopic measurement on molybdenite from Matou Cu-Mo polymetallic deposit Chizhou,Anhui province,China. The Chinese Journal of Nonferrous Metals,2015,25(12):3461-3472.)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!