The Longtougang Cu-Zn deposit is located in the Northern Wuyi terrane. Orebodies are primarily hosted in glutenite of the Outangdi formation,the minority hosted in biotite-plagioclase granulite of the Zhoutanyan formation. The mineralization process can be divided into four stages:anhydrous skarn stage,hydrous skarn stage,sulfide-quartz stage and quartz-carbonate stage,Cu-Zn mineralization mainly occurs in the sulfide-quartz stage. Petrographic and microthermometric studies of fluid inclusions in hedenbergite and quartz of different mineralization stages show that there exist three types of fluid inclusions in the Longtougang deposit,namely two-phase liquid-rich(type Ⅰ),two-phase gas-rich(type Ⅱ)and halite-bearing aqueous inclusions(type Ⅲ),all of them can be recognized in the sufide stage while only typeⅠ inclusions developed in the anhydrous and quartz-carbonate stage. In order to discuss the evolution of the ore-forming fluids,the homogenization temperature(Th)and salinity of the three types of fluid inclusions have been measured by Linkam THMS600 and calculated formula,respectively. TypeⅠ inclusions in the anhydrous stage display Th of 345 ℃~418 ℃,and salinities of 3.2 wt.%~8.7 wt.% NaCl equivalent;fluid boiling occurred in the sulfide-quartz stage,which resulted in type Ⅱ and type Ⅲ inclusions share similar homogenization temperatures of 295 ℃~391 ℃ and 267 ℃~360 ℃,and contrasted salinities of 0.7 wt.%~3.4 wt.% and 31.6 wt.%~38.9 wt.% NaCl equivalent,respectively;type Ⅰ inclusions in the quartz-carbonate stage display Th of 234 ℃~274 ℃,and salinities of 0.2 wt.%~2.2 wt.% NaCl equivalent. Considering that the filed observation and various types of fluid inclusions,tectonic depression may be a vital factor for fluid boiling,which may also contribute to the late-stage sulfide deposition.
Wei Tao,Ni Pei*,Fan Mingsen,Zhang Xin,Liu Zheng.
Study on ore-forming fluids of the Longtougang Cu-Zn deposit,Jiangxi province[J]. Journal of Nanjing University(Natural Sciences), 2018, 54(2): 308
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Wu S H,Mao J W,Xie G Q,et al. Geology,geochronology,and Hf isotope geochemistry of the Longtougang skarn and hydrothermal vein Cu-Zn deposit,North Wuyi area,southeastern China. Ore Geology Reviews,2015,70:136-150. [2] 魏娟娟. 北武夷龙头岗-王坞铜多金属矿田花岗岩类岩浆作用与成矿. 硕士学位论文. 北京:中国地质大学,2015. (Wei J J. The magmatism of granitoid and metallization of Longtougang-Wangwu copper polymetallic ore field in North Wuyi region. Master Dissertation. Beijing:China University of Geosciences(Beijing),2015. ) [3] 余心起,吴淦国,张 达等. 北武夷地区逆冲推覆构造的特征及其控矿作用. 地质通报,2008,27(10):1667-1677. (Yu X Q,Wu G G,Zhang D,et al. Thrust nappe structure and its ore-controlling effects in the North Wuyi area,China. Geological Bulletin of China,2008,27(10):1667-1677. ) [4] 李晓峰,Yasushi W,屈文俊. 江西永平铜矿花岗质岩石的岩石结构、地球化学特征及其成矿意义. 岩石学报,2007,23(10):2353-2365. (Li X F,Yasushi W,Qu W J. Textures and geochemical characteristics of granitic rocks in the Yongping climax-type Cu-Mo deposit,Jiangxi,southeastern China,and their alteration,mineralization and tectonic regime. Acta Petrologica Sinica,2007,23(10):2353-2365. ) [5] Su H M,Mao J W,He X R,et al. Timing of the formation of the Tianhuashan Basin,northern Wuyi:constrained from geochronology of volcanic and plutonic rocks. Science China:Earth Sciences,2013,56(6):940-955. ) [6] Yu X,Wu G,Zhao X,et al. New geochronological data from the Paleozoic and Mesozoic nappe structures,igneous rocks,and molybdenite in the North Wuyi area,Southeast China. Gondwana Research,2012,22(2):519-533. [7] 胡文宣,张文兰,胡受奚等. 闪锌矿交代黄铜矿形成的“黄铜矿病毒”结构. 矿物学报,2000,20(4):331-336. (Hu W X,Zhang W L,Hu S X. et al. Study of “chalcopyrite disease” texture resulted from replacement of chalcopyrite by sphalerite. Acta Mineralogica Sinica,2000,20(4):331-336. ) [8] Steele-Macinnis M,Lecumberri-Sanchez P,Bodnar R J. Hokie Flincs_H2O-NaCl:A Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX,properties of H2O-NaCl. Computers & Geosciences,2012,49(4):334-337. [9] Roedder E. Fluid inclusions. Mineralogical Society of America,1984. [10] 卢焕章,范宏瑞,倪 培等. 流体包裹体. 北京:科学出版社,2004,1-487. (Lu H Z,Fan H R,Ni P,et al. Fluid inclusions,Beijing:Science Press,2004,1-487. ) [11] Henley R,Hedenquist J. The importance of CO2 on freezing point measurements of fluid:Evidence from active geothermal systems and implications for epithermal ore deposition. Economic Geology,1985,80(5):1379-1406. [12] Bodnar R J. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta,1993,57(3):683-684. [13] 赵一鸣. 中国矽卡岩矿床. 北京:地质出版社,1990,1-354. (Zhao Y M. Skarn deposits of China. Beijing:Geological Publishing House,1990,1-354. ) [14] Patterson K M. Structural controls on mineralization and constraints on fluid evolution at the Sacrificio Cu(Zn-Pb-Ag-Au)skarn,Durango,Mexico. Ph. D. Dissertation. Vancouver:University of British Columbia,2001. [15] González-Partida E,Camprubí A. Evolution of mineralizing fluids in the Zn-Pb-Cu(-Ag±Au)skarn and epithermal deposits of the world-class San Martin district,Zacatecas,Mexico. Journal of Geochemical Exploration,2006,89(1-3):138-142. [16] Zhou T F,Yuan F,Yue S C,et al. Geochemistry and evolution of ore-forming fluids of the Yueshan Cu-Au skarn-and vein-type deposits,Anhui Province,South China. Ore Geology Reviews,2007,31(1-4):279-303. [17] Mariko T,Kawada M,Miura M,et al. Ore formation processes of the Mozumi skarn-type Pb-Zn-Ag deposit in the Kamioka mine,Gifu prefecture,central Japan-a mineral chemistry and fluid inclusion study. Mining Geology,1996,46(6):337-354. [18] Sabina S P. P-T-X conditions of mineralizing fluids from Pb-Zn-Ag hydrothermal-metasomatic deposit Stari Trg,TrepAcˇa,Kosovo. Austria-China workshop:Architecture of collisional orogens. 2007,09:13-15. [19] Chen F C,Deng J,Shu Q H,et al. Geology,fluid inclusion and stable isotopes(O,S)of the Hetaoping distal skarn Zn-Pb deposit,northern Baoshan block,SW China. Ore Geology Reviews,2017,90:913-927. [20] Takeno N,Sawaki T,Murakami H,et al. Fluid Inclusion Study of Skarns in the Maruyama Deposit,the Kamioka Mine,Central Japan. Resource Geology,1999,49(4):233-242. [21] Mollai H,Sharma R,Pe-Piper G. Copper mineralization around the Ahar batholith,north of Ahar(NW Iran):Evidence for fluid evolution and the origin of the skarn ore deposit. Ore Geology Reviews,2002,35(3-4):401-414. [22] 李 林,倪 培,杨玉龙等. 马坑铁钼铅锌多金属矿成矿流体演化及矿床成因类型. 高校地质学报,2016,22(3):401-412. (Li L,Ni P,Yang Y L,et al. A discussion on ore-forming fluid evolution and genesis of Makeng Fe-Mo-Pb-Zn polymetallic deposit,Fujian Province. Geological Journal of China Universities,2016,22(3):401-412. ) [23] Xu L G,Mao J W,Yang F Q,et al. Geology,geochemistry and age constraints on the Mengku skarn iron deposit in Xinjiang Altai,NW China. Journal of Asian Earth Sciences,2010,39(5):423-440. [24] Bertelli M,Baker T,Cleverley J S,et al. Geochemical modelling of a Zn-Pb skarn:Constraints from LA-ICP-MS analysis of fluid inclusions. Journal of Geochemical Exploration,2009,102(1):13-26. [25] Vallance J,Fontboté L,Chiaradia M,et al. Magmatic-dominated fluid evolution in the Jurassic Nambija gold skarn deposits(southeastern Ecuador). Mineralium Deposita,2009,44(4):389-413. [26] Meinert L D. Skarns and skarn deposits. Geoscience Canada,1992,19(4):145-162. [27] Samson I M,Williamsjones A E,Ault K M,et al. Source of fluids forming distal Zn-Pb-Ag skarns:Evidence from laser ablation-inductively coupled plasma-mass spectrometry analysis of fluid inclusions from El Mochito,Honduras. Geology,2008,36(12):947-950. [28] Meinert L D,Hedenquist J W,Satoh H,et al. Formation of anhydrousand Hydrous skarn in Cu-Au ore deposits by magmatic fluids. Economic Geology,2003,98(1):147-156. [29] Baker T,Lang J R. Reconciling fluid inclusion types,fluid processes,and fluid sources in skarns:an example from the Bismark Deposit,Mexico. Mineralium Deposita,2003,38(4):474-495. [30] Wu G,Chen Y C,Li Z Y,et al. Geochronology and fluid inclusion study of the Yinjiagou porphyry-skarn Mo-Cu-pyrite deposit in the East Qinling orogenic belt,China. Journal of Asian Earth Sciences,2014,79(2):585-607. [31] Singoyi B,Zaw K. A petrological and fluid inclusion study of magnetite-scheelite skarn mineralization at Kara,Northwestern Tasmania:Implications for ore genesis. Chemical Geology,2001,173(1-3):239-253. [32] Shepherd T J,Rankin A H,Alderton D H M. A practical guide to fluid inclusion studies. Glasgow:Blackie,1985,1-239. [33] Izawa E,Urashima Y,Ibaraki K,et al. The Hishikari gold deposit:High-grade epithermal veins in Quaternary volcanics of southern Kyushu,Japan. Journal of Geochemical Exploration,1990,36(1-3):1-56. [34] Simmons S F,Arehart G,Simpson M P,et al. Origin of massive calcite veins in the golden cross low-sulfidation,epithermal Au-Ag deposit,New Zealand. Economic Geology,2000,95(1):99-112. [35] Wilkinson J J. Fluid inclusions in hydrothermal ore deposits. Lithos,2001,55(1-4):229-272. [36] Li L,Ni P,Wang G G,et al. Multi-stage fluid boiling and formation of the giant Fujiawu porphyry Cu-Mo deposit in South China. Ore Geology Reviews,2017,81(2):898-911 [37] Wang G G,Ni P,Zhao C,et al. A combined fluid inclusion and isotopic geochemistry study of the Zhilingtou Mo deposit,South China:Implications for ore genesis and metallogenic setting. Ore Geology Reviews,2017,81(2):884-897. [38] Ni P,Wang G G,Yu W,et al. Evidence of fluid inclusions for two stages of fluid boiling in the formation of the giant Shapinggou porphyry Mo deposit,Dabie Orogen,Central China. Ore Geology Reviews,2015,65(4):1078-1094. [39] Mavrogenes,Berry J A,Newville A J,et al. Copper speciation in vapor-phase fluid inclusions from the Mole Granite,Australia. American Mineralogist,2002,87(10):1360-1364. [40] Baker T,Van Achterberg E,Ryan C G,et al. Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit. Geology,2004,32(2):1089-90. [41] 陈 贤,刘家军,张德会等. 热液矿床中锌的迁移、沉淀机制综述. 高校地质学报,2014(3):388-406. (Chen X,Liu J J,Zhang D H,et al. Mechanisms of Zinc transport and deposition in hydrothermal deposits. Geological Journal of China Universities,2014(3):388-406. )