南京大学学报(自然科学版) ›› 2018, Vol. 54 ›› Issue (2): 278–.

• • 上一篇    下一篇

 安徽栏杆地区辉绿岩型原生金刚石特征及成因初探

 朱仁智1,倪 培1*,马玉广2,盛中烈3,丁俊英1,王国光1,管申进4   

  • 出版日期:2018-03-30 发布日期:2018-03-30
  • 作者简介:1.内生金属矿床成矿机制研究国家重点实验室,地质流体研究所,南京大学地球科学与工程学院,南京,210023;
    2.安徽省地勘局第二水文工程地质勘查院,芜湖,241000;
    3.安徽省国土资源厅,合肥,230088;
    4.昆明理工大学有色金属矿产地质调查中心西南地质调查所,昆明,650093
  • 基金资助:
    基金项目:安徽省国土资源科技项目(2011-K-12,2015-K-9)
    收稿日期:2018-01-09
    *通讯联系人,E-mail:peini@nju.edu.cn

Characteristics and genetic studies on primary diamonds from mafic rocks in Lan’gan area,Anhui Province

 Zhu Renzhi1,Ni Pei1*,Ma Yuguang2,Sheng Zhonglie3,Ding Junying1,Wang Guoguang1,Guan Shenjin4   

  • Online:2018-03-30 Published:2018-03-30
  • About author:1.State Key Laboratory for Mineral Deposit Research,Institute of Geo-Fluids,School of Earth Science and Engineering,Nanjing University,Nanjing,210023,China;
    2.The Second Institute of Hydrology and Engineering Geological Prospecting of Anhui Geological Prospecting Bureau;
    3.Anhui Department of Land and Resources;
    4.Southwest Institute of Geological Survey,Geological Survey Center for Non-ferrous Mineral Resources,Kunming University of Science and Technology

摘要:  安徽栏杆地区位于华北克拉通东部陆块东南缘,该区新元古代地层中发育含原生金刚石的辉绿岩. 不同于山东蒙阴和辽宁瓦房店金刚石容矿岩石为金伯利岩,栏杆地区金刚石容矿岩石为基性岩,这在我国尚属首例. 对栏杆地区金刚石展开了形态学、拉曼光谱和红外光谱的研究,并对金刚石容矿岩石进行了岩相学和年代学研究. 结果表明栏杆地区金刚石呈黄绿色-黄褐色,透明,金刚石光泽,高硬度,晶形良好,为八面体和菱形十二面体,粒径0.1~0.5 mm,集中在0.2~0.35 mm,在1332 cm-1出现典型金刚石拉曼谱峰. 金刚石红外光谱中出现1130 cm-1谱峰,未出现1282 cm-1和1175 cm-1谱峰,为Ib型金刚石. 岩相学结果表明金刚石容矿岩石为辉绿岩. 斜锆石SIMS Pb-Pb定年结果表明辉绿岩形成年龄为912~914 Ma,代表了区域上一期新元古代基性岩浆作用事件,该期事件形成了栏杆地区原生金刚石. 栏杆地区橄榄玄武岩和玄武质角砾熔岩中捕获了含金刚石的辉绿岩角砾,导致岩石中含有极少量的金刚石.

Abstract:  Lan’gan area is located in the southeastern margin of the North China Craton(NCC). In this area,the Neoproterozoic strata were intruded by a large amount of dolerites and the latter is diamondiferous. It’s the first time to find diamonds in mafic rocks in China,which are different from diamondiferous kimberlites in Mengyin and Wafangdian areas in NCC. Studies on the morphology,Raman spectrum,and infrared spectrum were carried out on the diamond,and researches of the petrography and chronology were conducted on the diamondiferous mafic rocks. The results show that diamonds are yellow-green or yellow-brownish color,transparent,and adamantine luster. They have high hardness and cube or dodecahedron crystal. These diamonds are 0.1~0.5 mm in size,mainly 0.2~0.35 mm,and show typical diamond peak at 1332 cm-1 in Raman spectrum. Infrared spectrum results show that these diamonds have peak at 1130 cm-1 without peaks at 1282 cm-1 or 1175 cm-1,which suggests that these diamonds can be classified as Ib type. This type of diamond is different from other types of diamonds in kimberlites in NCC,which indicates that these diamonds were rapidly removed from mantle environment after formation,and nitrogen in diamond has not yet been converted in time. Petrographic observation indicates that diamondiferous mafic rocks are mainly dolerite. Compared with non-xenoliths dolerites,the olive basalt and basaltic boulder lava have few diamonds and dolerite xenoliths. The geneses of diamonds in these three mafic rocks are not same:diamonds in dolerites are primary;and diamonds in olive basalt and basaltic boulder lava are derived from dolerites xenoliths in host rocks. SIMS Pb-Pb baddeleyite dating shows that dolerites have crystallization age at 913±10 Ma,which represents Neoproterozoic mafic magmatism in Lan’gan area. During this event,diamonds formed. It is believed that the formation of diamond is nearly simultaneously with the formation and migration of basic magma.

 [1] 李劲松,赵松龄. 宝玉石大典. 北京:北京出版社,2001,2297. (Li J S,Zhao S L. Gem and jade records. Beijing:Beijing Geological Press,2001,2297.)
[2] Gurney J J,Helmstaedt H H,Richardson S H,et al. Diamonds through time. Economic Geology,2010,105(3):689-712.
[3] Gurney J J,Helmstaedt H H,Le Roex A P,et al. Diamonds:Crustal distribution and formation processes in time and space and an integrated deposit model. Economic Geology,2005,100:143-177.
[4] Shirey S B,Cartigny P,Frost D J,et al. Diamonds and the geology of mantle carbon. Reviews in Mineralogy & Geochemistry,2013,75:355-421.
[5] Hutchison M T. Diamond exploration and regional prospectivity of the northern Territory of Australia ∥ Proceedings of 10th International Kimberlite Conference. New Delhi,India:Springer,2013:257-280.
[6] Shirey S B,Richardson S H,Harris J W. Integrated models of diamond formation and craton evolution. Lithos,2004,77(1-4):923-944.
[7] Tappert R,Tappert M C. ‘The morphology of diamonds’,in Diamonds in Nature. Berlin:Springer,2011,13-42.
[8] Tappert R,Tappert M C. ‘The origin of diamonds’,in Diamonds in Nature. Berlin:Springer,2011,1-14.
[9] Capdevila R,Arndt N,Letendre J,et al. Diamonds in volcaniclastic komatiite from French Guiana. Nature,1999,399(6735):456-458.
[10] 杨经绥,徐向珍,白文吉等. 蛇绿岩型金刚石的特征. 岩石学报,2014,30(8):2113-2124. (Yang J S,Xu X Z,Bai W J,et al. Features of diamond in ophiolite. Acta Geoscientica Sinica,2014,30(8):2113-2124.)
[11] 蔡逸涛,陈国光,张 洁等. 安徽栏杆地区橄榄辉长岩地球化学特征及其与与金刚石成矿的关系. 资源调查与环境,2014,35(4):245-253. (Cai Y T,Chen G G,Zhang J,et al. Geochemical features of the olivine-gabbros and their relationship with diamond-minerlization in the Lan’gan area,Anhui province. Resources Survey and Environment,2014,35(4):245-253.)
[12] 张 洁,蔡逸涛,董钟斗等. 安徽栏杆金刚石矿物特征及其寄主母岩地球化学特征研究. 宝石和宝石学杂志,2015,17(5):1-11. (Zhang Y,Cai Y T,Dong Z D,et al. Investigation on mineral characteristic of diamond and geochemical characteristic of its host in Lan’gan area,Anhui province. Journal of Gems and Gemmology,2015,17(5):1-11.)
[13] 路凤香,赵 磊,邓晋福等. 华北地台金伯利岩岩浆活动时代讨论. 岩石学报,1995,11(4):365-374. (Lu F X,Zhao L,Deng J F,et al. The discussion on the ages of kimberlitic magma activity in north China platform. Acta Petrologica Sinica,1995,11(4):365-374.)
[14] 居 易,朱仁智,倪 培等. 瓦房店30号岩管金伯利岩中尖晶石成分特征及其意义. 矿物岩石地球化学通报,2016,35(6):1217-1225. (Ju Y,Zhu R Z,Ni P,et al. Composition characteristics and significance of spinel in the kimberlite from No. 30 pipe in the Wafangdian area,China. Bulletin of Mineralogy,Petrology and Geochemistry,2016,35(6):1217-1225.)
[15] 池际尚. 中国原生金刚石成矿地质条件研究. 武汉:中国地质大学出版社,1996,144. (Chi J S. Study on metallogenic geological conditions of primary diamond in China. Wuhan:China University of Geosciences Press,1996,144.)
[16] 王桂梁,姜 波,曹代勇等. 徐州—宿州弧形双冲—叠瓦扇逆冲断层系统. 地质学报,1998,72(3):228-236. (Wang G L,Jiang B,Cao D Y,et al. On the Xuzhou-Suzhou arcuate duplex-imbricate fan thrust system. Acta Geologica Sinica,1998,72(3):228-236.)
[17] 王清海,杨德彬,许文良. 华北陆块东南缘新元古代基性岩浆活动:徐淮地区辉绿岩床群岩石地球化学、年代学和Hf同位素证据. 中国科学:地球科学,2011,41(6):796-815. (Wang Q H,Yang D B,Xu W L. Neoproterozoic basic magmatism in the southeast margin of North China Craton:Evidence from whole-rock geochemistry,U-Pb and Hf isotopic study of zircons from diabase swarms in the Xuzhou-Huaibei area. Science China Earth Press,2011,41(6):796-815.)
[18] 柳永清,高林志,刘燕学等. 徐淮地区新元古代初期镁铁质岩浆事件的锆石U-Pb定年. 科学通报,2005,50(22):2514-2521. (Liu Y Q,Gao L Z,Liu Y X,et al. Zircon U-Pb dating for the earliest Neoproterozoic mafic magmatism in the southern margin of the North China block. Chinese Science Bulletin,2005,50(22):2514-2521.)
[19] Li Q L,Li X H,Liu Y,et al. Precise U-Pb and Pb-Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique. Journal of Analytical Atomic Spectrometry,2010,25(7):1107-1113.
[20] Jackson S E,Pearson N J,Griffin W L,et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology,2004,211(1-2):47-69
[21] Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology,2002,192(1):59-79.
[22] Ludwig K R. Isoplot/Ex 2. 49,a geochronological toolkit for microsoft excel. Berkeley Geochronology Center,Berkeley,CA. Special Publication 1a,2001.
[23] Frezzotti M L,Selverstone J,Sharp Z D,et al. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nature Geoscience,2011,4(10):703-706.
[24] Frezzotti M L,Huizenga J M,Compagnoni R,et al. Diamond formation by carbon saturation in C-O-H fluids during cold subduction of oceanic lithosphere. Geochimica Et Cosmochimica Acta,2014,143:68-86.
[25] Wilson L,Head III J W. An integrated model of kimberlite ascent and eruption. Nature,2007,447(7140):53-57.
[26] Haggerty S E. Diamond genesis in a multiply-constrained model. Nature,1986,320(6057):34-38.
[27] Skinner E M W,Smith C B,Bristow J W,et al. Proterozoic kimberlites and lamproites and a preliminary age for the Argyle lamproite pipe,western Australia. Transactions of the Geological Society of South Africa,1985,88:335-340.
[28] Le Roex A P,Bell D R,Davis P. Petrogenesis of group I kimberlites from Kimberley,South Africa:evidence from bulk-rock geochemistry. Journal of Petrology,2003,44(12):2261-2286.
[29] Becker M,Le Roex A P. Geochemistry of South African on-and off-craton,group I and group II kimberlites:petrogenesis and source region evolution. Journal of Petrology,2006,47(4):673-703.
[30] Zhang H F,Zhou M F,Sun M,et al. The origin of Mengyin and Fuxian diamondiferous kimberlites from the North China Craton:implication for Palaeozoic subducted oceanic slab-mantle interaction. Journal of Asian Earth Sciences,2010,37(5-6):425-437.
[31] Li Q L,Wu F Y,Li X H,et al. Precisely dating Paleozoic kimberlites in the North China Craton and Hf isotopic constraints on the evolution of the subcontinental lithospheric mantle. Lithos,2011,126(1-2):127-134.
[32] Wilson A N. Diamonds:From birth to eternity. Gemological Institute of America,1982.
[33] Chinn I,Kyser K,Viljoen F. Microdiamonds from the thirsty lake(Akluilak)dykes,northwest territories,Canada. Journal of Conference Abstracts,2000,5(2):307-308.
[34] Lefebvre N,Kopylova M,Kivi K,et al. Diamondiferous volcaniclastic debris flow of Wawa. Ontario,Canada ∥ 8th International Kimberlite Conference. Victoria B C,Canada,2003:5.
[35] 朱连兴. 鲁、苏、皖震旦系寒武系含金刚石砾岩特征. 长春地质学院学报,1992,22(2):150-155. (Zhu L X. Charactristic of Sinian and Cambrian diamondiferous in Jiangsu,Shandong,Anhui province. Journal of Changchun University of Earth Sciences,1992,22(2):150-155.)
[36] Tarney J. Geochemistry and significance of mafic dyke swarms in the Proterozoic ∥ Condie K C. Developments in Precambrian Geology. Armsterdam,Holland:Elsevier Science Publishers,1992:151-179.
[37] Evans C R,Tarney J. Isotopic ages of Assynt dykes. Nature,1964,204(4959):638-641.
[38] Chapman H J. 2390 Myr Rb-Sr whole-rock for the Scourie dykes of north-west Scotland. Nature,1979,277(5698):642-643.
[39] Sheraton J W,Black L P,McCulloch M T,et al. Age and origin of a compositionally varied mafic dyke swarm in the Bunger Hills,East Antarctica. Chemical Geology,1990,85(3):215-246.
[40] 吴福元,李献华,郑永飞等. Lu-Hf同位素体系及其岩石学应用. 岩石学报,2007,23(2):185-220. (Wu F Y,Li X H,Zheng Y F,et al. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica,2007,23(2):185-220.)
[41] Wingate M T D,Campbell I H,Compston W,et al. Ion microprobe U-Pb ages for Neoproterozoic basaltic magmatism in south-central Australia and implications for the breakup of Rodinia. Precambrian Research,1998,87(3-4):135-159.
[42] 李惠民,李怀坤,陈志宏等. 基性岩斜锆石U-Pb同位素定年 3 种方法之比较. 地质通报,2007,26(2):128-135. (Li H M,Li H K,Chen Z H,et al. Comparison of three methods for baddeleyite U-Pb isotope dating of basic rocks. Geological Bulletin of China,2007,26(2):128-135.)
[43] 安徽省地质矿产局. 安徽省区域地质志. 北京:地质出版社,1987. (Bureau of Geology and Mineral Resources of Anhui. Regional geology of Anhui province. Beijing:Geological Publishing House,1987.)
[44] 杨杰东,郑文武,王宗哲等. Sr,C 同位素对苏皖北部上前寒武系时代的界定. 地层学杂志,2001,25(1):44-47. (Yang J D,Zheng W W,Wang Z Z,et al. Age determining of the upper Precambrian system of northern Jiangsu-Anhui by using Sr and C isotopes. Journal of Stratigraphy,2001,25(1):44-47.)
[45] 郑文武,杨杰东,洪天求等. 辽南与苏皖北部新元古代地层Sr和C同位素对比及年龄界定. 高校地质学报,2004,(2):165-178. (Zheng W W,Yang J D,Hong T Q,et al. Sr and C isotopic correlation and the age boundary determination for the Neoproterozoic in the southern Liaoning and northern Jiangsu-northern Anhui provinces. Geological Journal of China Universities,2004,(2):165-178.)
[46] 张丕孚. 燕、辽、吉、苏皖北部的震旦系. 河北地质学院学报,1983,(3):10-22. (Zhang P F. Sinian in the northern Hebei,Liaoning,Jining,Jiangsu and Anhui provinces. Journal of Hebei College of Geology,1983,(3):10-22.)
[47] 钱迈平,袁训来,徐学思等. 徐淮地区新元古代叠层石组合. 古生物学报,2002,41(3):403-418. (Qian M P,Yuan X L,Xu X S,et al. An assemblage of the Neoproterozoic stromatolites from the Xuzhou-Huainan region. Acta Palaeontologica Sinica,2002,41(3):403-418.)
[48] 王丽娟. 徐淮地区新元古代地层划分、对比及沉积环境分析. 硕士学位论文. 青岛:山东科技大学,2009. (Wang L J. Stratigraphic division,correlation and sedimentary environment analysis of Neoproterozoic in Xuhuai region. Master Dissertation. Qingdao:Shandong University of Science and Technology,2009.)
[49] Evans T,Qi Z D. The kinetics of the aggregation of nitrogen atoms in diamond. Proceedings of the Royal Society of London A:Mathematical,Physical and Engineering Sciences,The Royal Society,1982:159-178.
[50] Breeding C M,Shigley J E. The “type” classification system of diamonds and its importance in gemology. Gems Gemology,2009,45:96-111.
[51] 何雪梅. 天然金刚石的红外光谱特征及其分类. 地质与勘探,2000,36(4):45-47. (He X M. Inrfared spectum characteristics and classification of nature diamond. Geology and Prospecting,2000,36(4):45-47.)
[52] 徐树桐,刘贻灿,陈冠宝等. 大别山及苏鲁地区微粒金刚石分类及其大地构造意义. 地质通报,2005,24(12):1081-1088. (Xu S T,L Y C,Chen G B,et al. Classification of microdiamonds from eclogites of the Dabie Mountains and Sulu area,east-central China,and their tectonic implications. Geological Buttetin of China,2005,24(12):1081-1088.)
[53] Kiflawi I,Mayer A E,Spear P M,et al. Infrared absorption by the single nitrogen and a defect centres in diamond. Philosophical Magazine Part B,1994,69(6):1141-1147.
[54] Sumiya H,Toda N,Satoh S. High-quality large diamond crystals. New Diamond and Frontier Carbon Technology,2000,10(5):233-251.
[55] Davies G. The optical properties of diamond. King’s College,1974.
[56] 张亚飞. 高氮含量宝石级金刚石的合成. 博士学论文. 长春:吉林大学,2009. (Zhang Y F. Synthesis of high nitrogen content gem diamond. Ph. D. Dissertation. Changchun:Jilin Univer-sity,2009.)
[57] Bundy F P. Pressure-temperature phase diagram of elemental carbon. Physica A:Statistical Mechanics and Its Applications,1989,156(1):169-178.
[58] 闫 峻,陈江峰,谢 智等. 鲁东晚白垩世玄武岩中的幔源捕虏体:对中国东部岩石圈减薄时间制约的新证据. 科学通报,2003,48(14):1570-1574. (Yan J,Cheng J F,Xie Z,et al. Mantle xenoliths in late Cretaceous basalts from eastern Shandong:new evidence for lithospheric thinning in eastern China. Chinese Science Bulletin,2003,48(14):1570-1574.)
[59] McKenzie D,Bickle J. The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology,1988,29(3):625-679.
[60] 张传林,周 刚,王洪燕等. 塔里木和中亚造山带西段二叠纪大火成岩省的两类地幔源区. 地质通报,2010,29(6):779-794. (Zhang C L,Zhou G,Wang H Y,et al. A review on two types of mantle domains of the Permian large igneous province in Tarim and the western section of Central Asian orogenic belt. Geological Bulletin of China,2010,29(6):779-794.)
[61] 张 健,陈 华,陆太进等. 山东金刚石晶体中氮片晶的分布特征及其表面微形貌. 宝石和宝石学杂志,2011,13(3):7-11. (Chen J,Chen H,Lu T J,et al. Distribution characteristics and surface microtopography of nitrogen platelets in diamond crystals from Shandong province,China. Journal of Gems and Gemmology,2011,13(3):7-11.)
[62] 魏 然,陈 华,陆太进等. 山东IaB与IaAB混合型金刚石及其生长结构特征. 2011中国珠宝首饰学术交流会,中国北京. 2011:7. (Wei R,Chen H,Lu T J,et al. Study of a diamond with a mixed types of IaB and IaAB,and the growth characteristics from Shandong kimberlite,China ∥ 2011 China Jewelry Academic Exchange Conference. Beijing,China. 2011:7.)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!