南京大学学报(自然科学版) ›› 2018, Vol. 54 ›› Issue (2): 259–.

• • 上一篇    下一篇

 论地质历史时期成矿作用的时控性

 杨晓勇1*,张连昌2   

  • 出版日期:2018-03-30 发布日期:2018-03-30
  • 作者简介: 1.中国科学技术大学地球和空间科学学院,合肥,230026;2.中国科学院地质与地球物理研究所,北京,100029
  • 基金资助:
     基金项目:国家重点研发计划‘深地资源勘查开采’重点专项(2016YFC0600408)
    收稿日期:2018-01-26
    *通讯联系人,E-mail:xyyang@ustc.edu.cn

 On time-controlled metallogenesis in geological era

 Yang Xiaoyong1*,Zhang Lianchang2   

  • Online:2018-03-30 Published:2018-03-30
  • About author: 1. School of Earth and Space Sciences,University of Science and Technology of China,Hefei,230026,China;
    2. Key Laboratory of Mineral Resources,Institute of Geology and Geophysics,CAS,Beijing,100029,China

摘要:  在地球45亿年的演化过程中,一些金属矿床类型及矿种分布于特定的地质时期,并在地球演化进程中不再重复出现,我们把这种在地球一定时期出现的特征矿床类型或矿种称之为成矿的时控性. 如条带状铁建造型铁矿主要出现在中晚太古代-古元古代,而铅锌矿则主要形成于中元古代之后,大规模斑岩矿床主要出现在中生代-新生代等. 但这种成矿作用的时代性,究竟是什么因素造成的,目前还没有一个科学的解释,或众说纷纭,仍然是地质科学上的未解之谜. 我国前寒武纪大规模成矿事件与世界对比可知,其优势矿种主要集中在镁、磷、石墨、稀土等资源,缺少兰德式金、铀矿床、VMS型铅-锌矿床以及大型的BIF型富铁矿,这又是一个谜团. 中国东部中生代大规模成矿作用还表现为成矿金属元素的分区分带,这些成矿元素、矿种分布的不均一性是值得深入探索的自然之谜.

Abstract:  In the evolution of the earth during 4.5 Ga,some metal deposit types and mineral species were distributed in the specific geological periods,and never repeated in the evolutional process of the earth,the features of a certain period of time-controlled deposit types or characteristics of minerals have been named as time-controlled metallogenesis. Such as the banded iron formation(BIF),they mainly occurred in the middle-late Archean to Paleoproterozoic,yet lead-zinc deposits dominantly formed after the Mesoproterozoic,large-scale porphyry deposits principally occurred in Mesozoic-Cenozoic. However,the reason caused tim-controlled metallogenesis remains debated. Compared with the ore deposits from whole world,the Precambrian large-scale metallogenic events in China do indicate that the dominant ore species are mainly composed of magnesium,phosphorus,graphite and REE resources,yet lack of the Rand-type gold and uranium deposits,the VMS-type Pb-Zn deposits and the rich iron deposits of BIF in China as a mystery. The eastern China has undergone a long and complex geological process,and the mineralization in this area is also pervades all geological periods. However,a number of lines of evidence have demonstrated that the most important metallogenic period in eastern China is in the Mesozoic era,especially in Yanshanian Period. Taking gold deposits as an example,the most important gold deposits in eastern China,such as fracture-altered rock type,quartz vein type,metamorphic hydrothermal type,volcano-subvolcanic hydrothermal type and disseminated type,are mainly formed in Mesozoic Era. The Yanshanian metallogenic explosion in eastern China is a long debated issue,the causal relationships between the explosion of large-scale mineralization of iron,copper and gold,still need more solid evidence to be supportted. The Mesozoic large-scale mineralization in eastern China is also represented by zoning and partitioning of metallogenic elements,the heterogeneity of these metallogenic elements and mineral species is a natural mystery that deserves further exploration.

 [1] 张秋生,李守义,刘连登. 中国早前寒武纪地质及成矿作用. 长春:吉林人民出版社,1984,536. (Zhang Q S,Li S Y,Liu L D. Early Precambrian Geology and mineralization in China. Changchun:Jilin People’s Publishing House,1984,536. )
[2] 翟安民,沈保丰. 中国元古宙构造演化与成矿作用. 张贻侠,刘连登. 中国前寒武纪矿产和构造. 北京:地震出版社,1994:125-146. (Zhai A M,Shen B F. Proterozoic tectonic evolution and mineralization in China ∥ Zhang Y X,Liu L D. Precambrian Minerals and structures in China. Beijing:Earthquake Publishing House,1994:125-146. )
[3] 陈毓川,王登红,林文蔚. 中国岩金矿床成矿系列. 矿床地质,1999,17:87-92. (Chen Y C,Wang D H,Lin W W. Metallogenesis series of China gold deposits. Mineral Deposits,1999,17:87-92. )
[4] 翟裕生,邓 军,李晓波. 区域成矿学. 北京:地质出版社,1999. (Zhai Y S,Deng J,Li X B. Regional metallogeny. Beijing:Geological Publishing House,1999. )
[5] 沈宝丰,翟安民,陈文明等.中国前寒武纪成矿作用. 北京:地质出版社,2006,362. (Shen B F,Zhai A M,Chen W M,et al. Precambrian Metallogenesis in China. Beijing:Geological Publishing,2006,362. )
[6] 毛景文,张作衡,裴荣富. 中国矿床模型概论,北京:地质出版社,2012,850. (Mao J W,Zhang Z H,Pei R F. An introduction to Deposit models in China,Beijing:Geological Publishing House,2012,850. )
[7] 翟明国. 华北克拉通的形成演化与成矿作用. 矿床地质,2010,29:24-36. (Zhai M G. Tectonic evolution and metallogenesis of North China Craton. Mineral Deposits,2010,29:24-36. )
[8] Starostin V I,Sorokhtin O G. Main regularities of the mineral resource distribution in the Earth. Earth Science Frontiers,2004,11:225-235.
[9] Sato M A. Less nickel for more oxygen. Nature,2009,458:714-715.
[10] Konhauser K O,Pecoits E,Lalonde S V,et al. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature,2009,458:750-752.
[11] 赵振华. 条带状铁建造(BIF)与地球大氧化事件. 地学前缘,2010,17:1-12. ( Zhao Z H. Banded iron formatIon and related great mddation event. Earth Science Frontiers,2010,17(2):1-12. )
[12] Catling D C,Buick R. Introduction to special issue oxygen and life in the Precambrian. Geobiology,2006,4:225-226.
[13] Cloud P. Atmospheric and hydrospheric evolution on the primitive Earth. Science,1968,160:729-736.
[14] Cloud P. Paleoecological significance of the banded iron-formation. Economic Geology,1973,68:1135-1143.
[15] Walker J G G. Iron and sulfur in the pre-biological ocean. Precambrian Research,1985,28:205-222.
[16] Kasting J F. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambrian Research,1987,34:205-229.
[17] Dimroth E,Kimbebericy M M. Precambrian atmospheric oxygen:Evidence in the sedimentary distributions of carbon,sulfur,uranium and iron. Canadian Journal of Earth Sciences,1976,13:1161-1185.
[18] Ohmoto H. Evidence in pre-2.2 Ga Paleozoic for the early evolution of atmospheric oxygen and terrestrial biota. Geology,1996,24:1135-1138.
[19] Zhai M G,Santosh M. Metallogeny of the North China Craton:Link with secular changes in the evolving Earth. Gondwana Research,2013,24:275-297.
[20] 张连昌,代堰锫,王长乐等. 华北克拉通太古代地壳增生与BIF铁矿. 矿物学报,2013,33(S2):419-420. (Zhang L C,Dai Y P,Wang C L,et al. Archean crust hyperplasia and BIF-iron deposits in the North China Craton. Acta Mineralogica Sinica,2013,33(S2):419-420. )
[21] 张连昌,翟明国,万渝生等. 华北克拉通前寒武纪BIF铁矿研究:进展与问题. 岩石学报,2012,28(11):3431-3445. (Zhang L C,Zhai M G,Wan Y S,et al. Study of the Precambrian BIF-iron deposits in the North China Craton:Progresses and questions. Acta Petrologrca Sinica,28(11):3431-3445. )
[22] 袁忠信,白 鸽,吴澄宇等.内蒙古白云鄂博铌、稀土、铁矿床的成矿时代和矿床成因.矿床地质,1991,10:59-70. (Yuan Z X,Bai G,Wu C Y,et al. Metallogenic epoch and genesis of niobium,rare earth and iron ore deposits IN Bayan Obo,Inner Mongolia. Mineral Deposits,1991,10:59-70. )
[23] Taylor S R,Mclenna S M. The continental crust:Its composition and evolution. Blackwell,1985,312.
[24] 裘愉卓,王中刚,赵振华.试论稀土铁建造. 地球化学,1981,8(3):185-200. (Qiu Y Z,Wang Z G,Zhao Z H. Discussion on REE-Fe formation. Geochemistry,1981,8(3):185-200. )
[25] Tu G Z,Zhao Z H,Qiu Y Z. Evolution of Precambrian REE mineralization. Precambrian Research,1985,27:131-151.
[26] Lai X D,Yang X Y,Santosh M,et al. New data of the Bayan Obo Fe-REE-Nb deposit,Inner Mongolia:Implications for ore genesis. Precambrian Research,2015,263:108-122.
[27] Yang X Y,Lai X D,Pirajno F,et al. Genesis of the Bayan Obo Fe-REE-Nb formation in Inner Mongolia,North China Craton:A perspective review. Precambrian Research,2017,288:39-71.
[28] 陈衍景. 2300Ma地质环境突变的证据及若干问题讨论. 地层学杂志,1990,14(3):178-186. (Chen YJ. Evidences of the rapid geological environmental changes in 2300 Ma and their probl-ems. Jour. Stratigraphy,1990,14(3):178-186. )
[29] 陈衍景,季海章,富士谷等. 2300Ma灾变事件的揭示对传统地质理论的挑战-关于某些重大地质问题的新认识. 地球科学进展,1991,6(2):63-680. (Chen YJ,Ji H Z,Fu S G,et al. Events of Cataclysm in 2300 Ma and their challenge to some traditional geological theories. Advance in Earth Geosciences,1991,6(2):63-680. )
[30] 陈衍景,杨秋剑,邓 健等. 地球演化的重要转折—2300 Ma时地质环境灾变的揭示及其思义. 地质地球化学,1996,(3):106-125. (Chen Y J,Yang Q J,Deng J,et al. Cataclysm in 2300 Ma-as an important transition during geological evolution and their significance. Geology and Geochemistry,1996,(3):106-125. )
[31] Bache J J. World Gold Deposits. Geological classification. London:North Oxford Academic,1987,117 -147.
[32] Robb L J,Robb V M. Gold in the Witwatersrand basin ∥ Wilson M G C,Anhausser C R. The Mineral Resources of South Africa:Handbook. Council for Geoscience,1998,16:294-349.
[33] Condie K C. Archean greenstone belts. Amsterdam:Elsevier Science Publication Company,1981,1-434.
[34] Frakes L A. Climates throughout geologic time. Amsterdam:Elsevier Scientific Publishing Company,1979.
[35] Ford M A. Uranium in South Africa. Journal of The South African Institute of Mining and Metallurgy 93,1993,(2):37-58.
[36] Liebenberg W L. Mineralogical features of gold ores in South Africa ∥ Adamson R J. Gold Metallurgy in South Africa. Johannesburg:Chamber of Mines of Sauth Africa,1973:352-446.
[37] Blockley J G. Hamersley basin:Mineralization. Economic Geology of Australia and Pupua New Guiana,1975,413-414.
[38] Rising M T,Frei R. U-rich Achean sea-floor sediments from Greenland:Indications of >3700 Ma oxygenic photosynthesis. Earth and Planetary Science Letters,2004,217:237-243.
[39] 涂光炽. 我国原生金矿类型的划分和不同类型金矿的远景剖析. 矿产与地质,1990,4(1):1-10. (Tu G Z. Classification on original gold deposit and their prospecting in China. Mineral Resources and Geology,1990,4(1):1-10. )
[40] 季海章,陈衍景,赵懿英. 孔达岩系与石墨矿床. 建材地质,1990,(6):9-11. ( Ji H Z,Chen Y J and Zhao Z Y. Khonda series and graphite deposits. China Nonmetallic Minerals Industry,1990,(6):9-11. )
[41] Sang L K. The metamorphic petrology of Susong group and the origin of the Susong phosphorite deposits,Anhui Province. Precambrian Research,1988,39:56-76.
[42] 朱上庆. 中国层状磷酸盐岩矿床的地质持征. 地球科学,1982,(1):157-1660. (Zhu S Q. Geological characteristics of layered phosphate rock deposits in China. Earth Science,1982,(1):157-1660. )
[43] 姜纪圣.孔达岩的研究历史及现状. 国外前寒武纪地质,1985,(2):1-3. (Jiang J S. Research history and present situation of Kongda Rocks. Precambrian Geology,1985,(2):1-3. )
[44] Eriksson K A,Truswell J F. Geological processes and acmospheric evolution in the Precambnan ∥ Tarling D H. Evolurion of the Earth’s Crust. I. London,UK:Academic Press,1978:219-238.
[45] 王兆敏. 中国菱镁矿现状与发展趋势. 中国非金属矿工业导刊,2006,(59):6-8. (Wang Z M. The situation of magnesite and its future in China. China Nonmetallic Minerals Industry,2006,(59):6-8. )
[46] Siever R. Chemical Evolurion of the Eady Precambrian New York,NY,USA:Academic Press,1977,18-23.
[47] 刘宇光. 中国辽宁北部太古代绿岩建造. 长春地质学院学报,1982,(1):47-68. (Liu G Y. Archean greenstone formation in northern Liaoning. Journal of Changchun College of Geology,1982,(1):47-68. )
[48] Zhai M G,Yang R Y,Lu W J,et al. Geochemistry and evolution of the Qingyuan Archaean granite-greenstone,terrain. NE,China. Precambrian Research,1985,27:37-62.
[49] 翟明国,彭 澎. 华北克拉通古元古代构造事件. 岩石学报,2007,23:2665-2682. (Zhai M G and Peng P. Tectonic events in Paleo-proterozoic,North China Craton. Acta Petrologica Sinica,2007,23:2665-2682. )
[50] Zhao C C,Ca vood P A,Wilde S A,et al. 1999. Thermal evolution of two textural types of mafic granulites in the North China craton:Evidence for both mantle plume and collisional tectonics. Geological Magazine,136:223-240.
[51] 洪大卫,王式光,谢锡林等. 试析地幔来源物质成矿域—以中亚造山带为例. 矿床地质,2003,22(1):41-55. (Hong D W,Wang S G,Xie X L,et al. An analysis of the metallogenic domain of the mantle source material - Examplified by the Central Asian orogenic belt. Mineral Deposits,2003,22(1):41-55. )
[52] 常印佛,周涛发,范 裕. 复合成矿与构造转换——以长江中下游成矿带为例. 岩石学报,2012,28(10):3067-3075. (Chang Y F,Zhou T F,Fan Y. Polygenetic compound mineralization and tectonic evolution:Study in the Middle-Lower Yangtze River Valley metallogenic belt. Acta Petrologica Sinica,2012,28(10):3067-3075)
[53] 华仁民,毛景文. 试论中国东部中生代成矿大爆发. 矿床地质,1999,18(4):300-308. (Hua R M,Mao J W. On Mesozoic metallogenic explosion in eastern China. Mineral Deposits,1999,18(4):300-308. )
[54] 毛景文,谢桂青,张作衡等. 中国北方中生代大规模成矿作用的期次及其地球动力学背景. 岩石学报,2005,21(1):169-188. (Mao J W,Xie G Q,Zhang Z H,et al. 2005. Mesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settings. Acta Peirologica Sinica,21(1):169-188. )
[55] 翟裕生,姚书振,林新多等. 长江中下游地区铁、铜等成矿规律研究. 矿床地质,1992,11(1):1-12. (Zhai Y S,Yao S Z,Lin X D,et al. Study on the metallogenic regularity of iron and copper in the middle and lower reaches of the Yangtze River. Mineral Deposits,11(1):1-12. )
[56] Sun W D,Ding X,Hu Y H,et al. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth and Planetary Science Letters,2007,262:533-542.
[57] Ling M X,Wang F Y,Ding X,et al. Cretaceous ridge subduction along the Lower Yangtze River Belt,eastern China. Economic Geology,2009,104:303-321.
[58] Liu S A,Li S G,He Y S,et al. Geochemical contrasts between early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China:Implications for petrogenesis and Cu-Au mineralization. Geochimica et Cosmochimica Acta,2010,74:7160-7178.
[59] Deng J H,Yang X Y,Li S,et al. Partial melting of subducted paleo-Pacific plate during the early Cretaceous:Constraint from adakitic rocks in the Shaxi porphyry Cu-Au deposit,Lower Yangtze River Belt. Lithos,2016,262:651-667.
[60] He T,Yang X Y,Zhang H,et al. Geochronology,geochemistry and Hf-Sr-Nd isotopes of the ore-bearing syenite from the Shapinggou porphyry Mo deposit,East Qinling-Dabie orogenic belt,Solid Earth Sciences,2016,1(3):101-117.
[61] Kerrich R,Goldfarb R,Groves D I,et al. Geodynamics of world-class gold dcposits:Characteristics,space-time distribution and origins,Reviews on Economic Geology,2000,13:501-551.
[62] Uyeda S,Kanamori H. Back-arc opening and the mode of subduction. Journal of Geophysical Research. Geophysical Research,1979,84(B3):1049-1061.
[63] 侯增谦. 斑岩Cu-Mo-Au矿床:新认识与新进展. 地学前缘,2004,11(1):131-144. (Hou Z Q. Porphyry Cu-Mo-Au deposits:New unders-tanding and progress. Earth Science Frontiers,2004,11(1):131-144. )
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!