南京大学学报(自然科学版) ›› 2018, Vol. 54 ›› Issue (2): 236–.

• • 上一篇    下一篇

斑岩型铜(±金-钼)矿床岩浆氧化硫与成矿还原硫转换机制及找矿意义

梁华英1*,张 健1,2,黄文婷1,陈喜连1,2,任 龙1,2,李凯旋1,2,王秀璋1   

  • 出版日期:2018-03-30 发布日期:2018-03-30
  • 作者简介:1.中国科学院广州地球化学研究所,广州,510640;2.中国科学院大学,北京,100049
  • 基金资助:
    基金项目:国家自然科学基金(41772065,41421062),科技部国家重点研究计划(2016YFC0600407) 收稿日期:2018-01-15 *通讯联系人,E-mail:lianghy@gig.ac.cn

Mechanisms for transform of sulfate in porphyry high oxidized magmas to ore-forming sulfur of porphyry Cu(±Au-Mo)deposits and their application

Liang Huaying1*,Zhang Jiang1,2,Huang Wenting1,Chen Xilian1,2, Ren Long1,2,Li Kaixuan1,2,Wang Xiuzhang1   

  • Online:2018-03-30 Published:2018-03-30
  • About author:1. Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou,510640,China; 2. University of Chinese Academy of Sciences,Beijing,100049,China

摘要: 斑岩型铜(±金-钼)矿床和高氧化岩浆具紧密成因联系,我国及世界主要斑岩铜钼金矿床岩浆期多发育磁铁矿-赤铁矿组合,个别矿床见岩浆期石膏. 这表明斑岩铜(±金-钼)矿床成矿岩浆logf(O2)>ΔFQM+2,岩浆中的硫主要为氧化硫,斑岩型矿床的硫主要为还原硫. 斑岩矿床在岩浆演化晚期及钾化阶段多发育磁铁矿,而岩浆-成矿系统中亚铁(Fe2+)和氧化硫反应,可被氧化成为Fe3+,形成磁铁矿,氧化硫被还原. 因此提出斑岩矿床成矿早期磁铁矿化,使氧化硫被还原形成还原硫,为斑岩矿床硫化物沉淀析出提供充足还原硫,在斑岩矿床形成过程中起着关键作用. 据成矿岩体多发育磁铁矿,提出斑岩型矿床找矿中应注意高磁化率中酸性岩带;斑岩矿床主要成矿多发育于黄铁绢英岩化阶段,而在弱酸性环境下的黄铁绢英岩化过程中,磁铁矿会被黄铁矿交代,磁铁矿减少,矿化较强处磁化率会降低. 因此,高磁化率带岩体中低磁化率区或高低磁化率变化频繁地段应为寻找富矿的重点地段.

Abstract: It is well known that porphyry Cu(±Au-Mo)deposits are genetically associated with high oxidized magmas. Magnetite-hematite assemblages have been found in the Yulong in the eastern Tibet,Xiongcun,Duobuza porphyry Cu-Au(Mo)deposits in the southern and the northern Gangdese,respectively,the Dexing porphyry Cu-Au-Mo deposit in Jiangxi and the Luoboling porphyry Cu-Mo deposit in Fujian province;magma anhydrite is found in the Yulong porphyry Cu-Au-Mo deposit and reported in many porphyry deposits all over the world. These features suggest that the magmas of porphyry Cu(±Au-Mo)deposits are characterized by high oxidized with logf(O2)>ΔFQM+2 and sulfate dominant. Porphyry Cu(±Au-Mo)deposits are characterized by sulfide association,suggesting that the reduced sulfur is dominant during main stage of porphyry mineralization. How is the magmatic sulfate reduced to the ore sulfide during the porphyry ore forming processes?Magnetite alteration is well developed in the silicon-potassium alteration stage of porphyry deposits. Based on that the reaction of ferrous with sulfate could result in the formation of magnetite and reduced sulfur,it is proposed that the early stage magnetite alteration in the porphyry ore forming systems which result in the transform of sulfate to reduced sulfur,play a key role in the formation of porphyry Cu(±Au-Mo)deposits. Based on our result it is suggested that felsic igneous belt with high magnetic susceptibility should be the ore prospecting target area of porphyry Cu(±Au-Mo)deposits. Due to magnetite could be replaced by pyrite during sericite-pyrite alteration stage in weak acidic condition and the porphyry ore rich bodies are often located in the overlap zone of potassic-sillicon and sericite-pyrite alteration,the ore rich domains should be characterized by low magnetic susceptibility. It is therefore,that the domain with low magnetic susceptibility in the zone with high magnetic susceptibility should be the key target for high grade porphyry ore exploration.

[1] 侯增谦. 大陆碰撞成矿论. 地质学报,2010,84(1):30-58. (Hou Z Q. Metallogensis of continental collision. Acta Geologica Sinica,2010,84(1):30-58. ) [2] 侯增谦,杨竹森,徐文艺等. 青藏高原碰撞造山带I:主碰撞造山成矿作用. 矿床地质,2006,25(4):337-358. (Hou Z Q,Yang Z S,Xu W Y,et al. Metallogenesis in Tibetan collisional orogenic belt:I. Mineralization in main collisional orogenic setting. Mineral Deposits,2006,25(4):337-358. ) [3] Richards J P. Postsubduction porphyry Cu-Au and epithermal Au deposits:Products of remelting of subduction-modified lithosphere. Geology,2009,37(3):247-250. [4] John D A,Ayuso R A,Barton M D,et al. Porphyry copper deposit model. Scientific Investigations Report. U. S. Department of the Interior U. S. Geological Survey,2010-5070-B. [5] Seedorff E,Einaudi M T. Henderson porphyry molybdenum system,Colorado:II. Decoupling of introduction and deposition of metals during geochemical evolution of hydrothermal fluids. Economic Geology,2004,99(1):39-72. [6] Silitoe R H. Porphyry Copper Systems. Economic Geology,2010,105(1):3-41. [7] Bowen R,Gunatilaka A. Copper:Its geology and economics. London:Applied Science Publishers Ltd.,1977,1-150. [8] Mitchell A H G. Metallogenic belts and angle of dip of Benioff zones. Nature,1973,245(143):49-52. [9] Richards J P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au)deposit formation. Economic Geology,2003,98(8):1515-1533. [10] Sillitoe R H. A plate tectonic model for the origin of porphyry copper deposits. Economic Geology,1972,67(2):184-197. [11] 芮宗瑶,黄崇轲,齐国明等. 中国斑岩铜(钼)矿床. 北京:地质出版社,1984,1-350. (Rui Z Y,Huang C K,Qi G M,et al. The porphyry Cu(-Mo)deposits in China. Beijing:Geological Publishing House,1984,1-350. ) [12] 朱 训,黄崇轲,芮宗瑶等. 德兴斑岩铜矿(钼)矿床. 北京:地质出版社,1983,1-336. (Zhu X,Huang C K,Rui Z Y,et al. The geology of Dexing porphyry copper ore field. Beijing:Geological Publishing House,1983,1-336. ) [13] 陈衍景,富士谷. 豫西金矿成矿规律. 北京:地震出版社,1992,1-234. (Chen Y J,Fu S G. Gold mineralization in west Henan,China. Beijing:Seismological Press,1992,1-234. ) [14] Chen H Y,Zaw K. Geodynamic settings and tectonic model of skarn gold deposits in China:An overview. Ore Geology Reviews,2007,31(1-4):139-169. [15] Hou Z Q,Ma H W,Zaw K et al. The Himalayan Yulong porphyry copper belt:Product of large-scale strike-slip faulting in eastern Tibet. Economic Geology,2003,98(1):125-145. [16] Hou Z Q,Yang Z M,Qu X M et al. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan orogeny. Ore Geology Reviews,2009,36(1-3):25-51. [17] 姜耀辉,蒋少涌,凌洪飞等. 陆-陆碰撞造山环境下的含铜斑岩岩石成因—以藏东玉龙斑岩铜矿带为例. 岩石学报,2006,22(4):697-706. (Jiang Y H,Jiang S Y,Ling H F,et al. Petrogenesis of Cu-bearing porphyry associated with continent-continent collisional setting:Evidence from the Yulong porphyry Cu ore-belt,east Tibet. Acta Petrologica Sinica,2006,22(4):697-706. ) [18] Liang H Y,Campbell I H,Allen C,et al. Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet. Mineralium Deposita,2006,41(2):152-159. [19] Hedenquist J W,Arribas A J,Reynolds T J. Evolution of an intrusion-centered hydrothermal system:Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits,Philippines. Economic Geology,1998,93(4):373-404. [20] Hedenquist J W,Lowenstern J B. The role of magmas in the formation of hydrothermal ore-deposits. Nature,1994,370(6490):519-527. [21] Liang H Y,Sun W D,Su W C,et al. Porphyry copper-gold mineralization at Yulong,China,promoted by decreasing redox potential during magnetite alteration. Economic Geology,2009,104(4):587-596. [22] Sun W D,Liang H Y,Ling M X,et al. The link between reduced porphyry copper deposits and oxidized magmas. Geochimica Et Cosmochimica Acta,2013,103(2):263-275. [23] Sun W D,Huang R F,Li He,et al. Porphyry deposits and oxidized magmas. Ore Geology Reviews,2015,65:97-131. [24] Thompson J F H,Sillitoe R H,Baker T,et al. Intrusion-related gold deposits associated with tungsten-tin provinces. Mineralium Deposita,1999,34(4):323-334. [25] Baker T,Ash C H,Thompson J F H. Geological setting and characteristics of the Red Chris porphyry copper-gold deposit,northwestern British Columbia. Exploration and Mining Geology,1997,6(4):297-316. [26] Audetata A,Pettkeb T,Dolejsc D. Magmatic anhydrite and calcite in the ore-forming quartz-monzodiorite magma at Santa Rita,New Mexico(USA):Genetic constraints on porphyry-Cu mineralization. Lithos,2004,72(3):147-162. [27] Chambefort I,Dilles J H,Kent A. Anhydrite-bearing andesite and dacite as a source for sulfur in magmatic-hydrothermal mineral deposits. Geology,2008,36(9):719-722. [28] 黄文婷,李 晶,梁华英等. 福建紫金山矿田罗卜岭铜钼矿化斑岩锆石LA-ICP-MS U-Pb年龄及成矿岩浆高氧化特征研究. 岩石学报,2013,29(1):283-293. (Huang W T,Li J,Liang H Y,et al. Zircon LA-ICP-MS U-Pb ages and highly oxidized features of magma associated with Luoboling porphyry Cu-Mo deposit in the Zijinshan ore field,Fujian province. Acta Petrologica Sinica,2013,29(1):283-293. ) [29] Sillitoe R H. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region. Australian Journal of Earth Sciences,1997,44(3):373-388. [30] Streck M J,Dilles J H. Sulfur evolution of oxidized arc magmas as recorded in apatite from a porphyry copper batholith. Geology,1998,26(6):523-526. [31] 肖 波,秦克章,李光明等. 西藏驱龙巨型斑岩Cu-Mo矿床的富S、高氧化性含矿岩浆—来自岩浆成因硬石膏的证据. 地质学报,2009,83(12):1860-1868. (Xiao B,Qin K Z,Li G M,et al. S-rich,highly-oxidized ore-bearing magma in the Qulong giant porphyry-type Cu-Mo deposit in southern Tibet - Evidence from magmatogenic anhydrite. Aata Geologica Sinica,2009,83(12):1860-1868. ) [32] Mungall J E,Brenan,J M. Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements. Geochimica Et Cosmochimica Acta,2014,125(1):265-289. [33] Gaetani G A,Grove L T. Partitioning of moderately siderophile elements among olivine,silicate melt,and sulfide melt:constraints on core formation in the Earth and Mars. Geochimia Et Cosmochimica Acta,1997,61(9):1829-1841. [34] Halter W E,Pettke T,Heinrich C A. The origin of Cu/Au ratios in porphyry-type ore deposits. Science,2002,296(5574):1844-1846. [35] Jugo P J,Candela P A,Peccoli P M. Magmatic sulfides and Au:Cu ratios in porphyry deposits:An experimental study of copper and gold partitioning at 850 ℃,100MPa in a haplogranitic melt-pyrrhotite-intermediate solid solution-gold metal assemblage,at gas saturation. Lithos,1999,46(3):573-589. [36] Lynton S J,Candela P A,Piccoli P M. An experimental study of the partitioning of copper between pyrrhotite and a high silica rhyolite melt,Economic Geology,1993,88(4):901-915. [37] Patten C,Barnes S J,Mathez E A,et al. Partition coefficients of chalcophile elements between sulfide and silicate melts and the early crystallization history of sulfide liquid:LA-ICP-MS analysis of MORB sulfide droplets. Chemical Geology,2013,358(6):170-188. [38] Mengason M J,Candela P A,Piccoli P M. Molybdenum,tungsten and manganese partitioning in the system pyrrhotite-Fe-S-O melt-rhyolite melt:Impact of sulfide segregation on arc magma evolution. Geochimia Et Cosmochimica Acta,2011,75(22):7018-7030. [39] Carroll M R,Rutherford M J. Sulfide and sulfate saturation in hydrous silicate melts. Journal of Geophysical Research,1985,90(S02):C601-C612. [40] 朱永峰. 硫在岩浆熔体中的溶解行为综述. 地质科技情报,1998,17(2):35-38. (Review of the solubility behavior of sulfur in magmatic melt. Geological Science and Technology Information,1998,17(2):35-38. ) [41] Jugo P J,Robetrt W L,Richards J P. An experimental study of the sulfur content in basaltic melts saturated with immiscible sulfide or sulfate liquids at 1300 ℃ and 1. 0 Gpa. Journal of Petrology,2005,46(4):783-798. [42] Gustafson L B. Porphyry copper deposits and calc-alkaline volcanism. The Earth:Its origin,structure,and evolution. London:Academic Press,1979,427-468. [43] Ishihara S. Granitoid series and mineralization. Economic Geology,1981,75th Anniversary Volume:81-86. [44] Ulrich T,Heinrich C A. Geology and alteration geochemistry of the porphyry Cu-Au deposit at Bajo de la Alumbrera,Argentina. Economic Geology,2002,97(8):1865-1888. [45] Arancibia O N,Clark A H. Early magnetite-amphibole-plagioclase alteration-mineralization in the Island Copper porphyry copper-gold-molybdenum deposit British Columbia. Economic Geology,1996,91(2):402-438. [46] Carmichael I S E,Ghiorso M S. Oxidation-reduction relations in basic magma:A case for homogeneous equilibria. Earth and Planetary Science Letters,1986,78(2-3):200-210. [47] Simon A C,Pettke T,Candela P A,et al. Copper partitioning in a melt-vapor-brine-magnetite-pyrrhotite assemblage. Geochimia et Cosmo-chimica Acta,2006,70(22):5583-5600. [48] Rowins S M. Reduced porphyry copper-gold deposits:A new variation on an old theme. Geology,2000,28(6):491-494.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!