南京大学学报(自然科学版) ›› 2014, Vol. 50 ›› Issue (6): 855–864.

• • 上一篇    下一篇

近海台风中心自适应定位方法研究

黄旋旋1,2,朱科锋1*,赵坤   

  • 出版日期:2014-11-11 发布日期:2014-11-11
  • 作者简介:(1. 南京大学中尺度灾害性天气教育部重点实验室,大气科学学院,南京,210093;2. 宁波市气象315012)
  • 基金资助:
    国家重点基础研究发展计划项目(973: 2013CB430101)、公益性行业专项(GYHY201006007)、国家自然基金(41275031、41322032)项目

An algorithm for adaptive identifying and tracking eyes of typhoons near landfall

Huang Xuanxuan1,2 ,Zhu Kefeng1 ,Zhao Kun1   

  • Online:2014-11-11 Published:2014-11-11
  • About author:(1Key Laboratory for Mesoscale of Severe Weather of Ministry of Education, School of Atmospheric Sciences, Nanjing University, Nanjing, 210093, China; 2. Ningbo Meteorological Bureau, Ningbo, 315012, China)

摘要: 本研究提出了近海台风自适应定位方法(Typhoon eye adaptive identifying and tracking, TEAIT)。该方法主要基于多普勒反射率数据对近海台风的台风眼进行客观的识别和追踪。文中对4个典型台风个例使用TEAIT方法进行了定位测试,并将其与基于径向风的GBVTD-simplex和基于弱回波的TCET方法作比较。相比GBVTD-simplex方法,因为雷达回波的观测半径要大于径向风,TEAIT方法可以更早的追踪台风。对相同时段定位比较表明,两者中心定位差绝大部分都分布在5km内。进一步分析表明,差异大主要是在台风路径显著转向或者台风眼剧烈收缩时,此时台风环流中心和回波中心不重合导致。相比同样基于回波的TCET方法,TEAIT方法即便在台风结构不对称、眼不闭合、低层填塞等情况下都能成功定位,而TECT法在这些情形下容易定位失败。TEAIT方法比TECT方法表现出更好地识别和连续追踪能力。

Abstract: In this study, a Typhoon eye adaptive identifying and tracking (TEAIT) algorithm which based on radar reflectivity is developed to objectively identify and track the center of Typhoon near the coast. Four typical Typhoon cases were selected to examine the performance of this method and the results were compared two operational methods: the GBVTD-simplex (ground-based velocity-track-display) and the TCET (tropical cyclone eye tracking). The former is based on radar radial while the latter is based on weak echo. Since the observation range of reflectivity is larger than radial wind, TEAIT can track typhoon center earlier than GBVTD-simplex. The comparison in the same track period indicates the difference of those two methods are smaller. Most of center difference are within 5 km. The larger difference was found in the moment when the structure of the typhoon eye changes rapidly. In that case, the center of the wind field is not consistent with the center of reflectivity. Compared the TCET algorithm which is also reflectivity-based method, the TEAIT algorithm can track the center even in the situation when the structure of typhoon is asymmetrical, or the eye is not closed, or the low level is filled due to the landing process and so on. In contrast, TCET may failed to locate the center in those circumstances. TEAIT can track the center more steadily and continuously than TCET. 


[1] 陈联寿,丁一汇.西北太平洋台风概论.北京:科学出版社, 1979, 206~226.
[2] Chang P L, Jou B J D, Zhang J. An Algorithm for Tracking Eyes of Tropical Cyclones. Weather and Forecasting, 2009,24(1) :245~261.
[3] Chaurasia S, Kishtawal C M, Pal P K. An objective method of cyclone centre determination from geostationary satellite observations. International Journal of Remote Sensing, 2010, 31(9): 2429~2440.
[4] Kepert J D. Objective analysis of tropical cyclone location and motion from high-density observations. Monthly Weather Review, 2005, 133(8): 2406~2421.
[5] Dvork V F. Tropical cyclone intensity analysis and forecasting from Satellite imagery. Monthly Weather Review, 1975, 103(5): 420~430.
[6] Wimmers A J, Velden C S. Objectively Determining the Rotational Center of Tropical Cyclones in Passive Microwave Satellite Imagery. Journal of Applied Meteorology and Climatology, 2010, 49(9): 2013~2034.
[7] Knaff J A, DeMaria M, Molenar D A, et al. An Automated, Objective, Multiple-Satellite-Platform Tropical Cyclone Surface Wind Analysis. Journal of Applied Meteorology and Climatology, 2011, 50(10): 2149~2166.
[8] 李 妍,陈 希,费树岷等.基于遗传算法初始群体优化的台风中心自动定位.数据采集与处理, 2011,26(4): 425~429.
[9] 乔文峰,李元祥,许映龙等.基于灰色预测和Chan-Vese模型的台风中心定位. 激光与红外,2012,42(4): 443~447.
[10] 陈 希,李 妍,毛科峰等.基于非线性最优目标函数的红外云图台风中心自动定位.热带气象学报, 2013(1):155~160.
[11] Griffin J S, Burpee R W, Marks F D Jr, et al. Real-time airborne analysis of aircraft data supporting operational hurricane forecasting. Weather and Forecasting, 1992,7(3): 480~490.
[12] 周仲岛,邓秀明,张保亮.多普勒雷达在台风中心定位与最大风速半径的应用.大气科学(中国台湾), 1996,24(1) :1~24.
[13] Lee W C, Marks F D Jr. Tropical cyclone kinematic structure retrieved from single-Doppler radar observations. Part II: The GBVTD-simplex center ?nding algorithm. Monthly Weather Review, 2000, 128(6): 1925~1936.
[14] 黄晓龙,赵 放.雷达资料近海台风定位方法研究.第27届中国气象学会年会雷达技术开发与应用分会场论文集,中国气象学会,2010,10.
[15] 张 勇, 刘黎平, 张志强等.基于组网天气雷达的台风定位方法探讨.气象科技, 2011,39(5):587~595.
[16] 许映龙,矫梅燕,毕宝贵等.近海台风雷达定位方法应用研究.大气科学, 2006,30(6): 1119~1128.
[17] Wood V T, Brown R A. Effects of radar proximity on single-Doppler velocity signatures of axisymmetric rotation and divergence. Monthly Weather Review, 1992,120(12): 2798~2807.
[18] Wood V T. A technique for detecting a tropical cyclone center using a Doppler radar. Journal of Atmospheric and Oceanic Technology, 1994, 11(5):1207~1216.
[19] Marks F D Jr, Houze R A Jr, Gamache J F. Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. Journal of the Atmospheric Sciences, 1992,49(11): 919~942.
[20] Nelder J A, Mead R. A simplex method for function minimization. Computer journal, 1965, 7(4):308~313.
[21] Lee W C, Jou B J D, Chang P L, et al. Tropical cyclone kinematic structure retrieved from single-Doppler radar observations. Part I: Interpretation of Doppler velocity patterns and the GBVTD technique. Monthly Weather Review, 1999, 127(10): 2419~2439. [22] Bell M M, Lee W C. Objective Tropical Cyclone Center Tracking Using Single-Doppler Radar. Journal of Applied Meteorology and Climatology, 2012, 51(5): 878~896.
[23] 张培昌,杜秉玉,戴铁丕.雷达气象学.北京: 气象出版社,2001, 511.
[24] Senn H V, Hiser H W. On the origin of hurricane spiral rain bands. Journal of Meteorology, 1959, 16(4): 419~426.
[25] Willoughby H E, Black P G. Hurricane Andrew in Florida: Dynamics of a disaster. Bulletin of the American Meteorological Society, 1996, 77(3): 543~549.
[26] Willoughby H E. Tropical cyclone eye thermodynamics. Monthly Weather Review, 1998,126(12): 1653~1680.
[27] Blackwell K G. The evolution of Hurricane Danny (1997) at landfall: Doppler-observed eyewall replacement, vortex contraction/intensification, and low-level wind maxima. Monthly Weather Review, 2000,128(12): 4002~4016.
[28] Wang Y Q. Structure and Formation of an Annular Hurricane Simulated in a Fully Compressible, Nonhydrostatic Model—TCM4.Journal of the Atmospheric Sciences, 2008,65(5):1505~1527.
[29] 吴 丹,赵 坤,余 晖等.利用多普勒雷达数据分析中国华东地区登陆台风轴对称降水特征.气象学报, 2010, 68(6):896~907.
[30] 赵 放,冀春晓,高守亭等.浙江沿海登陆台风结构特性的多普勒雷达资料分析.气象学报, 2012,70(1):15~29.
[31] Wu D, Zhao K, Yu H, et al. Radar Observation of Precipitation Asymmetries in Tropical Cyclones making landfall on East China Coast. Tropical Cyclone Research and Review, 2013, 2(2): 81~95.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!