南京大学学报(自然科学版) ›› 2014, Vol. 50 ›› Issue (6): 829–837.

• • 上一篇    下一篇

京津冀城市群高温灾害风险区划研究

杜吴鹏*,权维俊2,轩春怡1,房小怡1,郭文利3   

  • 出版日期:2014-11-10 发布日期:2014-11-10
  • 作者简介:(1.北京市气候中心,北京,100089;2.京津冀环境气象预报预警中心,北京,100089;3.北京市气象服务中心,北京,100089)
  • 基金资助:
    国家973重点基础研究发展计划(2010CB528500),国家自然科学基金(41105103),国家气象公益性行业科研专项(201106032)

The study of high temperature disaster risk zoning in Beijing-Tianjin-Hebei urban agglomeration

Du Wupeng1*, Quan Weijun2, Xuan Chunyi1, Fang Xiaoyi1, Guo Wenli3   

  • Online:2014-11-10 Published:2014-11-10
  • About author:(1. Beijing Municipal Climate Center, Beijing, 100089; 2. Beijing-Tianjin-Hebei Prediction and Early Warning Center for Environmental Meteorology, Beijing, 100089; 3. Beijing Municipal Meteorological Service Center, Beijing, 100089)

摘要: 本文利用175个气象站观测数据和社会经济资料,从致灾因子、孕灾环境、承灾体、抗灾能力四个方面研究了京津冀城市群高温灾害风险,结果表明:京津冀城市群高温频次呈南部高、北部低以及平原地区高、山区低的空间分布特征,频次最高区域位于石家庄和衡水以南、邯郸以北地区,北部的承德、张家口和秦皇岛地区高温频次最低;致灾因子高危险区和孕灾环境高敏感区主要分布在河北省南部,承灾体高易损区主要位于大型城市,经济发达的城区抗灾能力较强,抗灾能力风险较低;京津冀城市群高温灾害综合风险区划呈南高北低特征,高风险区集中在河北中南部及北京和天津的市区,河北中部及邻近北京、天津地区则为次高风险区和中等风险区,河北北部、西北部和东北部多为低风险区和较低风险区。 

Abstract: In recent years, global and regional climate change has become a hot issue and which were studied by many domestic and foreign atmospheric scientists. Meanwhile, climate change has caused some extreme weather and climate events, among them, the frequency of high temperature disaster is increasing obviously, and which had brought out many adverse impacts to municipal operation, economic development and human health. Therefore, carrying out the research of risk zoning is becoming more and more important and indispensable. Beijing-Tianjin-Hebei urban agglomeration is one of the most important and most developed regions, where often affected by meteorological disaster, especially summer high temperature and hot wave. In this paper, the data of 175 meteorological observations and counties socio-economic material are used, we researched and analyzed the high temperature disaster risk in Beijing-Tianjin-Hebei urban agglomeration about disaster factors, disaster environment, bearing body and resistant capacity. Results showed that: the frequency of high temperature was higher in southern region and in plains, while it was lower in northern region and in mountains. The area between Shijiazhuang, Hengshui and Handan had the highest frequency. However, in the north of Hebei province, such as Chengde, Zhangjiakou and Qinhuangdao had the lowest probability. The regions of most dangerous in disaster factors and most sensitive in disaster environment were located in the south of Hebei province, as while as, the most vulnerability regions of bearing body mainly distributed in large urban. The downtown of developed regions had stronger capacity in resisting high temperature disaster, and their risk index was lower. The integrated risk zoning of high temperature disaster in Beijing-Tianjin-Hebei urban agglomeration was characterized that it was lower in south and was higher in north, highest-risk areas concentrated in central and southern Hebei province, and the urban areas of Beijing and Tianjin; meanwhile, they were the higher-risk or moderate-risk areas in the central of Hebei province and the neighboring regions of Beijing and Tianjin; while, the regions of northern, northwest and northeast Hebei province belonged to lowest-risk or lower-risk areas. Comprehensive assessing and analyzing regional differences in high temperature risk in Beijing-Tianjin-Hebei urban agglomeration, and researching the risk zoning method can provide a scientific basis and reference for other meteorological disaster evaluation.

[1] 秦大河.Thomas Stocker, 259名作者和TSU(驻伯尔尼和北京). IPCC第五次评估报告第一工作组报告的亮点结论. 气候变化研究进展,2014,10(1):1~6.
[2] IPCC. Climate change 2007: the physical science basis. Cambridge: Cambridge University Press, 2007,996.
[3] Xin Xu, Yugang Du, Jianping Tang, et al. Variations of temperature and precipitation extremes in recent two decades over China. Atmospheric Research, 2011, 101: 143~154.
[4] IPCC. Climate change 2013: the physical science basis. Cambridge: Cambridge University Press, in press. http://www.ipcc.ch/report/ar5/wg1/#.Uq_tD7KBRR1, 2013-09-30.
[5] 张可慧,李正涛,刘剑锋等. 河北地区高温热浪时空特征及其对工业、交通的影响研究. 地理与地理信息科学,2011,27(6):90~95.
[6] 许遐祯,郑有飞,尹继福等. 南京市高温热浪特征及其对人体健康的影响. 生态学杂志,2011,30(12):2815~2820.
[7] Fouillet A, Rey G, Laurent F, et al. Excess mortality related to the August 2003 heat wave in France. International Archives Occupational and Environmental Heath, 2006, 80: 16~24.
[8] 郑柞芳,王迎春,刘伟东. 地形及城市下垫面对北京夏季高温影响的数值研究. 热带气象学报,2006,22(6):672~676.
[9] 史印山,谷永利,林 艳. 京津冀高温天气的时空分布及环流特征分析. 气象,2009,35(6):63~69.
[10] 张国华,张江涛,金晓青等. 京津冀城市高温气候特征及城市化效应. 生态环境学报,2012,21(3):455~463.
[11] 黄 帅,江 静. 中国持续性高温事件的时空分析. 南京大学学报(自然科学),2012,48(6):689~700.
[12] 史 军,丁一汇,崔林丽. 华东地区夏季高温期的气候特征及其变化规律. 地理学报,2008,63(3):237~246.
[13] 熊亚军,于 平,扈海波. 国内高温气候变化事实及其灾害特征研究进展. 干旱气象,2013,31(1):194-198.
[14] 扈海波,王迎春,刘伟东. 气象灾害事件的数学形态学特征及空间表现. 应用气象学报,2007,18(6):801~809.
[15] 张书娟,尹占娥,刘耀龙等. 基于GIS的华东地区高温灾害危险性分析. 灾害学,2011,26(2):59~65.
[16] 黄慧琳,缪启龙,潘文卓等. 杭州市高温致灾因子危险性风险区划. 气象与减灾研究,2012,35(2):51~56.
[17] 郭 虎,熊亚军,扈海波. 北京市奥运期间气象灾害风向承受与控制能力分析. 气象,2008,32(2):77~82.
[18] 王建鹏,金丽娜,薛 荣等. 基于加权综合法的西安城市内涝灾害区划分析. 气象科技,2012,40(6):1056~1060.
[19] 杨丰政. 基于GIS的徐水县气象灾害风险评估研究. 硕士学位论文. 南京:南京信息工程大学应用气象学院,2012.
[20] 马 进. 基于GIS的洛阳市高温灾害风险区划. 气象与环境科学,2012,35(4):62~68.
[21] 庞文保,李建科,宋 鸿等. 陕西省高温气象风险区划及其防御. 陕西气象,2011,2:47~48.
[22] 刘勇洪,扈海波,房小怡等. 冰雪灾害对北京城市交通影响的预警评估方法. 应用气象学报,2013,24(3):373~379.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!