南京大学学报(自然科学版) ›› 2014, Vol. 50 ›› Issue (6): 820–828.

• • 上一篇    下一篇

城市粗糙子层湍流能谱特征分析*

王国羽1,孙鉴泞1,2**   

  • 出版日期:2014-11-10 发布日期:2014-11-10
  • 作者简介:(1.南京大学大气科学学院,南京,210093;2.江苏省气候变化协同创新中心,南京,210093)
  • 基金资助:
    国家重点基础研究发展计划(973计划)项目(2010CB428501) 2014-6-30

Characteristics of turbulence spectra in the urban roughness layer

Wang Guo-Yu1, Sun Jian-Ning1,2   

  • Online:2014-11-10 Published:2014-11-10
  • About author:(1. School of Atmospheric Sciences, Nanjing University, Nanjing, 210093, China; 2. Collaborative Innovation Center of Climate Change, Nanjing University, Nanjing, 210093, China )

摘要: 对南京市委党校两个不同高度层湍流速度谱特性分析表明:(1)近中性情况下,两层湍流动能密度均大于平坦草地上结果,并且低层湍流动能密度大于高层,高层的湍流比低层的湍流更接近局地各向同性,说明城市粗糙子层的湍流生成率要高于草地上的结果,并且越靠近冠层顶部,湍流的生成率越高,湍流越偏离局地各向同性。两层都有约20%的能谱出现了谱隙,湍流次尺度的平均量级与粗糙元的平均尺度比较接近,城市粗糙子层中粗糙元效应比较明显。(2)两层湍流动能耗散率随稳定度变化,中性情况下,粗糙子层中两层湍流动能耗散率均大于平坦草原上的结果,并且低层的值要高于高层;不稳定情况下,粗糙子层中湍流动能耗散率随不稳定度增加的增长率要高于草地上结果,稳定情况下,两者相差不大。

Abstract: The field observations for turbulence characteristics in the urban roughness sublayer were conducted on the meteorological tower in Nanjing Municipal Party School. The analysis of power spectra of wind speed at the two levels shows that: (1) In near neutral condition s, the two levels’ turbulence kinetic energy density is larger than that near homogeneous grass land , and the value at the lower level is larger than that at the higher level. The t urbulence at the lower level is more anisotropic than that at the higher level. The production of the turbulence is stronger over the urban canopy than that over the homogeneous grass land , and the value at the lower level is also larger than that at the higher level. About 20% of the spectra has a spectra gap. The mean scale of the secondary s pectra p eaks is similar with the scale of the roughness elements, which means that the individual element has prominent effect on turbulence in urban roughness sublayer. (2) In near neutral conditions, turbulence kinetic energy dissipation rate at the two levels are higher than the result over the h omogeneous grass land. As to the two levels ’ results, t urbulence kinetic energy dissipation rate is higher at low level. In unstable conditions, the t urbulence kinetic energy dissipation rate grows faster with increasing instability than the result observed over the h omogeneous grass land. In stable condition s, the growing rates of t urbulence kinetic energy dissipation rate with increasing stability over the two kind surfaces are similar

[1] Tennekes H, Lumley J L. A first course in turbulence. MIT press, 1972, 320.
[2] Raupach M R, Antonia R A, Rajagopalan S. Rough-wall turbulent boundary layers. Applied Mechanics Reviews, 1991, 44(1): 1~25.
[3] Roth M. Review of atmospheric turbulence over cities. Quarterly Journal of Royal Meteorological Society, 2000, 126(3): 941~990.
[4] Christen A. Atmospheric turbulence and surface energy exchange in urban environments: results from the Basel Urban Boundary Layer Experiment (BUBBLE). University of Basel, 2005.
[5] Rotach M W. Simulation of urban-scale dispersion using a Lagrangian stochastic dispersion model. Boundary-Layer Meteorology, 2001, 99(3): 379~410.
[6] Rotach M W. On the influence of the urban roughness sublayer on turbulence and dispersion. Atmospheric Environment, 1999, 33(24): 4001~4008.
[7] Liu G, Sun J. Impact of surface variations on the momentum flux above the urban canopy. Theoretical and applied climatology, 2010, 101(3-4): 411~419.
[8] 王国羽, 孙鉴泞, 张宏升. 城市近地层动量通量-梯度关系分析. 南京大学学报: 自然科学版, 2013, 49(6): 774-781.
[9] 胡广书.数字信号处理——理论、算法与实现. 第二版,清华大学出版社, 2003, 487.
[10] Kaimal J C, Finnigan J J. Atmospheric boundary layer flows: their structure and measurement. New York: Oxford University Press, 1994, 280.
[11] Kaimal J C, Kristensen L. Time series tapering for short data samples. Boundary-Layer Meteorology, 1991, 57(1-2): 187~194.
[12] Kaimal J C, Wyngaard J C, Izumi Y, et al. Spectral characteristics of surface‐layer turbulence. Quarterly Journal of the Royal Meteorological Society, 1972, 98(417): 563~589.
[13] Baldocchi D D, Hutchison B A. Turbulence in an almond orchard: Spatial variations in spectra and coherence. Boundary-Layer Meteorology, 1988, 42(4): 293~311.
[14] Baldocchi D D, Meyers T P. A spectral and lag-correlation analysis of turbulence in a deciduous forest canopy. Boundary-Layer Meteorology, 1988, 45(1-2): 31~58.
[15] 刘树华. 森林冠层上下湍流谱结构和耗散率. 中国科学: D辑, 1998, 28(5): 469~480.
[16] McNaughton K G, Laubach J. Power spectra and cospectra for wind and scalars in a disturbed surface layer at the base of an advective inversion. Boundary-layer meteorology, 2000, 96(1-2): 143~185.
[17] McNaughton K G. Turbulence structure of the unstable atmospheric surface layer and transition to the outer layer. Boundary-layer meteorology, 2004, 112(2): 199-221.
[18] Hong J, Choi T, Ishikawa H, et al. Turbulence structures in the near‐neutral surface layer on the Tibetan Plateau. Geophysical research letters, 2004, 31(15): L15106.
[19] Li W, Hiyama T, Kobayashi N. Turbulence spectra in the near-neutral surface layer over the Loess Plateau in China. Boundary-layer meteorology, 2007, 124(3): 449~463.
[20] Barthlott C, Fiedler F. Turbulence structure in the wake region of a meteorological tower. Boundary-layer meteorology, 2003, 108(1): 175~190.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!