南京大学学报(自然科学版) ›› 2014, Vol. 50 ›› Issue (3): 294–.

• • 上一篇    下一篇

高灵敏度宽禁带半导体紫外探测器

陆海*,陈敦军,张荣,郑有炓   

  • 出版日期:2014-06-01 发布日期:2014-06-01
  • 作者简介:南京大学电子科学与工程学院,南京,21009
  • 基金资助:
    国家自然科学基金(60936004,60825401),国家973计划(2010CB327500)

High sensitivity wide-bandgap semiconductor ultraviolet photodetector

Lu Hai, Chen Dunjun, Zhang Rong, Zhen Youdou   

  • Online:2014-06-01 Published:2014-06-01
  • About author:School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China

摘要: 以碳化硅(SiC)和III族氮化物为代表的宽禁带半导体是近年来国内外重点研究和发展的新型第三代半导体材料,具有禁带宽度大、导热性能好、电子饱和漂移速度高以及化学稳定性优等特点,用于工作于紫外波段的光探测器件具有显著的材料性能优势。宽禁带半导体紫外探测器的主要应用包括:国防预警、环境监测、化工和生化反应的光谱分析和过程检测、以及天文研究等。本文主要回顾近年来南京大学在此方面开展的一些代表工作,所涉及到的典型器件有:具有极低暗电流的AlGaN基日盲MSM紫外探测器、高量子效率AlGaN基日盲雪崩光电探测器、以及SiC基可见光盲紫外单光子探测器。

Abstract: Wide-bandgap semiconductors, such as group-III nitrides and SiC have recently attracted much attention in ultraviolet (UV) photodetector applications due to their large bandgap energy, high electron saturation velocity, superior radiation hardness, and high temperature resistance. Such photodetectors have a variety of potential applications including missile flame detection, environmental monitoring, chemical/biological agent detection, and solar physics. In this paper, some of our recent works on design and fabrication of UV photodetectors based on III-nitride and SiC semiconductors are reviewed. These related devices include: AlGaN-based MSM solar-blind photodetectors with ultra-low dark current, AlGaN-based solar-blind avalanche photodiodes with high quantum efficiency, and SiC-based visible-bind avalanche photodiodes with single photon counting capability.

[1] Yan F, Luo Y, Zhao J H, et al. 4H-SiC visible-blind UV avalanche photodiode. Electronics Letters, 1999, 35: 929~930.
[2] Xin X, Yan F, Sun X, et al. Demonstration of 4H-SiC UV single photon counting avalanche photodiode. Electronics Letters, 2005, 41: 212~214.
[3] Beck A L, Karve G, Wang S, et al. Geiger mode operation of ultraviolet 4H-SiC avalanche photodiodes. IEEE Photonics Technology Letters, 2005, 17: 1507~1509.
[4] Vert A, Soloviev S, Fronheiser J, et al. Solar-blind 4H-SiC single-photon avalanche diode operating in Geiger mode. IEEE Photonics Technology Letters, 2008, 20: 1587~1589.
[5] Zhu H L, Chen X P, Cai J F, et al. 4H-SiC ultraviolet avalanche photodetectors with low breakdown voltage and high gain. Solid-state Electronics, 2009, 53: 7~10.
[6] McClintock R, Yasan A, Mayes K, et al. High quantum efficiency AlGaN solar-blind photodiodes. Applied Physics Letters, 2003, 84: 1248.
[7] Cicek E, Vashaei Z, Huang E K, et al. AlxGaGa1-x N-based deep-ultraviolet 320×256 focal plane array. Optical Express, 2012, 37: 896~898.
[8] Jiang H, Egawa T. Low-dark-current high-performance AlGaN solar-blind p-i-n photodiodes. Japanese Journal of Applied Physics, 2008, 47: 1541~1543.
[9] Tut T, Gokkavas M, Inal A, et al. AlxGa1-xN-based avalanche photodiodes with high reproducible avalanche gain. Applied Physics Letters, 2007, 90: 163506.
[10] Huang Y, Chen D J, Lu H, et al. Back-illuminated separate absorption and multiplication AlGaN solar-blind avalanche photodiodes. Applied Physics Letters, 2012, 101: 253516.
[11] Shao Z G, Chen D J, Lu H, et al. High-gain AlGaN solar-blind avalanche photodiodes. IEEE Electron Device Letters, 2014, 35: 372.
[12] Sun L, Chen J L, Li J F, et al. AlGaN solar-blind avalanche photodiodes with high multiplication gain. Applied Physics Letters, 2010, 97: 191103.
[13] Xie F, Lu H, Chen D J, et al. Ultra-low dark current AlGaN-based solar-blind metal-semiconductor metal photodetectors for high-temperature applications. IEEE Sensors Journal, 2012, 12(6): 2086.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!