南京大学学报(自然科学版) ›› 2014, Vol. 50 ›› Issue (3): 280–.

• • 上一篇    下一篇

二硫化钼的电子输运与器件

邱 浩,王欣然*   

  • 出版日期:2014-05-27 发布日期:2014-05-27
  • 作者简介:南京大学固体微结构物理国家重点实验室,南京大学电子科学与工程学院,南京,210093
  • 基金资助:
    ?国家973计划(2013CBA01600, 2011CB922100, 2010CB923401, 2011CB302004),国家自然科学基金(61261160499, 11274154, 21173040, 11274222, 21373045, 61274114),国家科技重大专项(2011ZX02707),江苏省自然科学基金(BK2012302, BK20130016, BK2012024)

Electron transport in MoS2 and its applications in devices

Qiu Hao, Wang Xinra   

  • Online:2014-05-27 Published:2014-05-27
  • About author:National Laboratory of Microstructures, School of Electronic Scienceand Engineering,
    Nanjing University, Nanjing, 210093, China

摘要: 二硫化钼具有与石墨烯类似的二维层状结构,因其宽禁带、无悬挂键等特性,在以晶体管为代表的逻辑器件领域有广泛的应用;另外,单层二硫化钼为直接带隙半导体,在光电器件中应用也逐渐引起研究人员的关注。本文综述了近期基于二硫化钼晶体管器件电子输运研究、及其在电子、光电器件领域研究进展;除此,对于二维过渡金属二硫属化物中诸如二硫化钨、二硒化钨在器件方面应用也进行了简单的讨论。

Abstract: Molybdenum disulfide (MoS2) has the same layer-stack structure as graphene and shows itself prospects in logic devices, due to its large bandgap and absence of dangling bonds. Besides, single-layer MoS2 with a direct bandgap has recently attracted researchers’ interest in its potential applications in optoelectronics. We review the recent development of MoS2, electron transport in MoS2 transistors and its applications in electronics and optoelectronics. Other than MoS2, we also discuss some novel applications based on other members in two-dimensional transition metal dichalcogenides (TMDCs), especially WS2 and WSe2.

[1] Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nature Nanotechnology, 2011, 6: 147~150.
[2] Coleman J N, Lotya M, ONeill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011, 331: 568~571.
[3] Wang Q H, Zadeh K K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012, 7: 699~712.
[4] http://en.wikipedia.org/wiki/Molybdenum_disulfide.
[5] Kuc A, Zibouche N, Heine T. Influence of quantum con?nement on the electronic structure of the transition metal sufide TS2. Physical Review B, 2011, 83: 245213~245216.
[6] Zhu Z Y, Cheng Y C, Schwingenschlogl U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Physical Review B, 2011, 84: 153402~153406.
[7] Mak K F, He K, Shan J, et al. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotechnology, 2012, 7: 494~498.
[8] Zeng H, Dai J, Yao W, et al. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotechnology, 2012, 7: 490~493.
[9] Cao T, Wang G, Han W, et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Communications, 2012, 3: 887~891.
[10] Wang X R, Shi Y, Zhang R. Field-effect transistors based on two-dimensional materials for logic applications. Chinese Physics B, 2013, 22: 098505~098519.
[11] Liu L, Lu Y, Guo J. On monolayer MoS2 field-effect transistors at the scaling limit. IEEE Transactions on Electron Device, 2013, 60: 4133~4139.
[12] Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 10451~10453.
[13] Qiu H, Pan L, Yao Z, et al. Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Applied Physics Letters, 2012, 100: 123104~123106.
[14] Park W, Park J, Jang J, et al. Oxygen environmental and passivation effects on molybdenum disulfide field effect transistors. Nanotechnology, 2013, 24: 095202~095206.
[15] Bao W, Cai X, Kim D, et al. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Applied Physics Letters, 2013, 102: 042104~042107.
[16] Das S, Chen H, Penumatcha A V, et al. High performance multilayer MoS2 transistors with scandium contacts. Nano Letters, 2013, 13: 100~105.
[17] Kim S, Konar A, Hwang W, et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nature Communications, 2012, 3: 1011-1017.
[18] Kaasbjerg K, Thygesen K S, Jacobsen K W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Physical Review B, 2012, 85: 115317~115332.
[19] Wang H, Yu L, Lee Y, et al. Integrated circuits based on bilayer MoS2 transistors. Nano Letters, 2012, 12: 4674~4680.
[20] Ghatak S, Pal A N, Ghosh A. Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano, 2011, 5: 7707~7712.
[21] Li S, Wakabayashi K, Xu Y, et al. Thickness-dependent interfacial coulomb scattering in atomically thin field-effect transistors. Nano Letters, 2013, 13: 3546~3552.
[22] Jin T, Kang J, Kim E S, et al. Suspended single-layer MoS2 devices. Journal of Applied Physics, 2013, 114: 164509~164512.
[23] Liu D, Guo Y, Fang L, et al. Sulfur vacancies in monolayer MoS2 and its electrical contacts. Applied Physics Letters, 2013, 103: 183113~183116.
[24] Zhou W, Zou X, Najmaei S, et al. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Letters, 2013, 13: 2615~2622.
[25] Ghatak S, Ghosh A. Observation of trap-assisted space charge limited conductivity in short channel MoS2 transistor. Applied Physics Letters, 2013, 103: 122103~122106.
[26] Qiu H, Xu T, Wang Z. Hopping transport through defect-induced localized states in molybdenum disulphide. Nature Communications, 2013, 4: 2642~2647.
[27] Ye J T, Zhang Y J, Akashi R, et al. Superconducting dome in a gate-tuned band insulator. Science, 2012, 338: 1193~1196.
[28] Cho J H, Lee J, He Y, et al. High-capacitance ion gel gate dielectrics with faster polarization response times for organic thin film transistors. Advanced Materials, 2008, 20: 686~690.
[29] Radisavljevic B, Kis A. Mobility engineering and a metal–insulator transition in monolayer MoS2. Nature Materials, 2013, 12: 815~820.
[30] Zhang Y J, Ye J T, Yomogida Y. Formation of a stable p?n junction in a liquid-gated MoS2 ambipolar transistor. Nano Letters, 2013, 13: 3023~3028.
[31] Sun Q Q, Li Y J, He J L, et al. The physics and backward diode behavior of heavily doped single layer MoS2 based pn junctions. Applied Physics Letters, 2013, 102: 093104~093106.
[32] Chen M, Nam H, Wi S, et al. Stable few-layer MoS2 rectifying diodes formed by plasma-assisted doping. Applied Physics Letters, 2013, 103: 142110~142113.
[33] Tan Z, Tian H, Feng T, et al. A small-signal generator based on a multi-layer graphene/molybdenum disulfide heterojunction. Applied Physics Letters, 2013, 103, 263506~263508.
[34] Radisavljevic B, Whitwick M B, Kis A. Small-signal amplifier based on single-layer MoS2. Applied Physics Letters, 2012, 101: 043103~043106.
[35] Yu W J, Li Z, Zhou H, et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nature Materials, 2013, 12: 246~252.
[36] Yin Z, Li H, Li H, et al. Single-layer MoS2 phototransistors. ACS Nano, 2012, 6: 74~80.
[37] Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nature Nanotechnology, 2013, 8: 497~501.
[38] Yu W J, Liu Y, Zhou H, et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nature Nanotechnology, 2013, 8: 952~958.
[39] Splendiani A, Sun L, Zhang Y, et al. Emerging photoluminescence in monolayer MoS2. Nano Letters, 2010, 10: 1271~1275.
[40] Eda G, Yamaguchi H, Voiry D, et al. Photoluminescence from chemically exfoliated MoS2. Nano Letters, 2011, 11: 5111~5116.
[41] Tongay S, Zhou J, Ataca C, et al. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Letters, 2013, 13: 2831~2836.
[42] Carladous A, Coratger R, Ajustron F, et al. Light emission from spectral analysis of Au/MoS2 nanocontacts stimulated by scanning tunneling microscopy. Physcial Review B, 2002, 66: 045401~045408.
[43] Sundaram R S, Engel M, Lombardo A, et al. Electroluminescence in single layer MoS2. Nano Letters, 2013, 13, 1416~1421.
[44] Hwang W S, Remskar M, Yan R, et al. Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior. Applied Physics Letters, 2012, 101: 013107~013110.
[45] Podzorov V, Gershenson M E, Kloc Ch, et al. High-mobility field-effect transistors based on transition metal dichalcogenides. Applied Physics Letters, 2004, 84: 3301~3303.
[46] Kang J, Tongay S, Zhou J, et al. Band offsets and heterostructures of two-dimensional semiconductors. Applied Physics Letters, 2013, 102: 012111~012114.
[47] Das S, Appenzeller J. WSe2 field effect transistors with enhanced ambipolar characteristics. Applied Physics Letters, 2013, 103: 103501~103505.
[48] Huang J, Pu J, Hsu C, et al. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano, 2014, 8: 923~930.
[49] Radisavljevic B, Whitwick M B, Kis A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano, 2011, 5: 9934~9938.
[50] Lopez N, Elias A L, Berkdemir A, et al. Photosensor device based on few-layered WS2 films. Advanced Functional Materials, 2013, 23: 5511~5517.
[51] Peimyoo N, Shang J, Cong C, et al. Nonblinking, intense two-dimensional light emitter: Monolayer WS2 triangles. ACS Nano, 2013, 7: 10985~10994.
[52] Polman A, Atwater H A. Photonic design principles for ultrahigh-efficiency photovoltaics. Nature Materials, 2012, 11: 174~177.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王学锋1,2*,徐永兵1,2*,张 荣1,2. 低维磁性耦合体系的新物性及电/光场调控进展[J]. 南京大学学报(自然科学版), 2014, 50(3): 309 .
[2] 骆乾坤*,吴剑锋2,杨运3,钱家忠1. 渗透系数空间变异程度对进化算法优化结果影响评价[J]. 南京大学学报(自然科学版), 2015, 51(1): 60 -66 .
[3] 孙大军1,2, 王永恒1,2*, 勇俊1,2. 实频数据技术在水声换能器宽带匹配中的应用[J]. 南京大学学报(自然科学版), 2015, 51(6): 1182 -1188 .
[4] 杨政予1,王新龙1
. 茅山军号声现象的进一步研究[J]. 南京大学学报(自然科学版), 2015, 51(6): 1097 -1106 .
[5] 张亚平,2,万宇1,2,聂青3,阮晓红1,2*,王子健4. 湖泊水体中氮的生物地球化学过程及其生态学意义[J]. 南京大学学报(自然科学版), 2016, 52(1): 5 -15 .
[6] 李荣富1,2,罗跃辉 ,2,曾洪玉1,2,阮晓红1,2*,刘丛强3*. 稳定同位素技术在环境水体氮的生物地球化学循环研究中的应用[J]. 南京大学学报(自然科学版), 2016, 52(1): 16 -26 .
[7] 李 婷1,张超智1,2*,沈 丹1,袁 阳1. 石墨烯和氧化石墨烯的生物体毒性研究进展[J]. 南京大学学报(自然科学版), 2016, 52(2): 235 .
[8] 涂 臻*,卢 晶 . 散射条件下小尺度扬声器阵列声聚焦算法鲁棒性研究[J]. 南京大学学报(自然科学版), 2016, 52(2): 382 .
[9] 葛 勇1,孙宏祥1,2*,袁寿其1,夏建平1,管义钧1 . 含对称三角形腔的波导管中宽带低频隔声效应[J]. 南京大学学报(自然科学版), 2016, 52(4): 619 .
[10] 季 阳,单 丹,钱明庆,李 伟,徐 骏*,陈坤基. 镶嵌于非晶碳化硅中的高导电性掺杂纳米晶硅的制备与电学性能研究[J]. 南京大学学报(自然科学版), 2016, 52(5): 780 .