南京大学学报(自然科学版) ›› 2014, Vol. 50 ›› Issue (3): 235–.

• •    下一篇

人工电磁超材料的电磁波调控特性

金飚兵*, 冯一军, 伍瑞新   

  • 出版日期:2014-05-27 发布日期:2014-05-27
  • 作者简介:南京大学电子科学与工程学院,南京,210093
  • 基金资助:
    国家自然科学基金(60990320, 60801001, 61101011,61371035, 61071007, 61271080),教育部科研重大项目(313029)

The characteristics of electromagnetic waves manipulation on metamaterial

Jin Biaobing, Feng Yijun, Wu Ruixin   

  • Online:2014-05-27 Published:2014-05-27
  • About author:School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China

摘要: 人工电磁超材料具有自然界材料所不具备的电磁参数,并且拥有可设计性和可灵活调节性质,可实现对电磁波传播性能进行新的调控,是近年来的研究热点。本文介绍了一系列运用人工电磁超材料调控电磁波传播的功能器件,包括非对称电磁波传输器件、可调节电磁波吸波结构、电磁波极化调制器件,磁性光子晶体、磁性左手材料和基于超导薄膜的太赫兹人工电磁超材料,这些器件运用人工超材料的特殊物理特性和参数可设计性,具有全新的功能和优势,有效提高了对电磁波的调控能力。

Abstract: Metamaterial which usually possesses material constitutive parameters not obtained with natural material becomes a hot research topic recently. Its designabilty and flexible tunability of the electromagnetic (EM) properties can be utilized to manipulate EM wave propagation. In this paper, we propose a variety of functional materials and devices that could manipulate the EM waves through metamaterials, including device that enables asymmetric EM wave propagation, tunable EM wave absorber, EM wave polarization modulator, magnetic photonic crystal, magnetic left-handed materials as well as the terahertz metamaterials based on superconductor thin films. Due to their specific and designable characteristics, these devices could have novel functionality and superior performances, enhancing the ability of EM wave manipulation.

[1] Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 1996,76: 4773~4776.
[2] Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47: 2075~2084.
[3] Veselago V G. The electrodynamics of substances with simultaneously negative values of ? and ?. Soviet Physics Uspekhi, 1968,10:509~514.
[4] Weiglhofer W S, Lakhtakia A. Introduction to complex mediums for electromagnetics and optics. Bellingham, WA, USA: SPIE Press, 2003, 757.
[5] Fedotov V A, Mladyonov P L, Prosvirnin S L, et al. Asymmetric propagation of electromagnetic waves through a planar chiral structure. Physical Review Letters, 2006, 97: 167401.
[6] Plum E, Fedotov V A, Zheludev N I. Planar metamaterial with transmission and reflection that depend on the direction of incidence. Applied Physics Letters, 2009, 94: 131901.
[7] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber. Physical Review Letters, 2008, 100: 207402.
[8] Huang C, Feng Y H, Zhao J M, et al. Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures. Physical Review B, 2012, 85: 195131.
[9] Zhu B, Wang Z, Huang C, et al. Polarization intsensitive metamaterial absorber with wide incident angle. Progress in Electromagnetics Research, 2010, 101: 231~239.
[10] Zhu B, Feng Y J, Zhao J M, et al. Switchable metamaterial reflector/absorber for different polarized electromagnetic waves. Applied Physics Letters, 2010, 97: 051906.
[11] Zhu B, Feng Y J, Zhao J M, et al. Polarization modulation by tunable electromagnetic metamaterial reflector/absorber. Optical Express, 2010, 18: 23196~23203.
[12] Liu S Y, Du J J, Lin Z F, et al. Formation of robust and completely tunable resonant. Physical Review B, 2008, 78: 155101.
[13] Haldane F D M, Raghu S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Physical Review Letters, 2008, 100: 013904.
[14] Raghu S, Haldane F D M. Analogs of quantum-Hall-effect edge states in photonic crystals. Physical Review A ,2008, 78: 033834.
[15] Wang Z, Chong Y D, Joannopoulos J D, et al. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Physical Review Letters, 2008, 100: 013905.
[16] Ochiai T, Onoda M. Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states. Physical Review B, 2009, 80:155103.
[17] Wang Z, Chong Y D, Joannopoulos1 J D, et al. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature, 2009, 461: 772-U20.
[18] Ao X Y, Lin Z F, Chan C T. One-way edge mode in a magneto-optical honeycomb photonic crystal. Physical Review B,2009, 80:033105.
[19] Poo Y, Wu R X, Lin Z F, et al. Experimental realization of self-guiding unidirectional electromagnetic edge states. Physical Review Letters, 2011, 106: 093903.
[20] He C, Chen X L, Lu M H, et al. Left-handed and right-handed one-way edge modes in a gyromagnetic photonic crystal. Journal of Applied Physics, 2010, 107: 123117.
[21] Yang Y, Poo Y, Wu R X, et al. Experimental demonstration of one-way slow wave in waveguide involving gyromagnetic photonic crystals. Applied Physics Letters, 2013, 102(23): 231113.
[22] Yu Z F, Veronis G, Wang Z, et al. One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal. Physical Review Letters, 2008, 100:023902.
[23] Atsushi I, Zhang S, Genov D A, et al. Deep subwavelength terahertz waveguides using gap magnetic plasmon. Physical Review Letters, 2009, 102: 043904.
[24] Liu S Y, Lu W L, Lin Z F, et al. Magnetically controllable unidirectional electromagnetic waveguiding devices designed with metamaterials. Applied Physics Letters, 2010, 97:201113.
[25] Liu S Y, Lu W L, Lin Z F, et al. Molding reflection from metamaterials based on magnetic surface plasmons. Physical Review B, 2011, 84: 045425.
[26] Poo Y, Wu R X, Liu S Y, et al. Experimental demonstration of surface morphology independent electromagnetic chiral edge states originated from magnetic plasmon resonance. Applied Physics Letters, 2012, 101: 081912.
[27] Lian J, Fu J X, Gan L, et al. Robust and disorder-immune magnetically tunable one-way waveguides in a gyromagnetic photonic crystal. Physical Review B, 2012, 85: 125108.
[28] Qiu W J, Wang Z, and Solja?i? M. Broadband circulators based on directionalcoupling of one-way waveguides. Optics Express, 2011, 19(22): 22248.
[29] Huang C, Jiang C. Nonreciprocal photonic crystal delay waveguide. Journal of the Optical Society of America B, 2009, 26: 1954.
[30] He C, Zhang X L, Feng L, et al. One-way cloak based on nonreciprocal photonic crystal. Applied Physics Letters. 2011, 99: 151112.
[31] Yablonovitch E. Photonics one-way road for light. Nature, 2009, 461:744.
[32] Wu R X, Zhang X K, Lin Z F, et al. Possible existence of left-handed materials in metallic magnetic thin films. Journal of Magnetism and Magnetic Materials, 2004, 271: 180.
[33] Dewar G A. Thin wire array and magnetic host structure with n<0. Journal of Applied Physics, 2005, 97: 10Q101.
[34] Wu R X. Effective negative refraction index in periodic metal-ferrite –metal film composite. Journal of Applied Physics, 2005, 97: 670105.
[35] Wu R X, Zhao T, Chen P, et al. Periodic layered waveguide with negative index of refraction. Applied Physics Letters.2007, 90: 082506.
[36] Wu R X, Zhao T E, Xiao J Q. Periodic ferrite–semiconductor layered composite with negative index of refraction. Journal of Physics: Condensed Matter, 2007, 19: 026211.
[37] Wu R X, Ji X Y. Wave polarization and left-handed materials in metallic magnetic composites. Applied Physics A, 2007, 87: 205~208.
[38] Zou D Y, Jiang A M, Wu R X. Ferromagnetic metamaterial with tunable negative index of refraction. Journal of Applied Physics, 2010, 107: 013507.
[39] He G H, Wu R X, Poo Y, et al. Magnetically tunable double-negative material composed of ferrite-dielectric and metallic mesh. Journal of Applied Physics, 2010, 107: 093522.
[40] Wu R X, Zou D Y. Phase diagram of lossy negative index metamaterials. Applied Physics Letters, 2008, 93: 101106.
[41] Rachford F, Armstead D, Harris V, et al. Simulations of ferrite-dielectric-wire composite negative index materials. Physical Review Letters, 2007, 99: 057202.
[42] Zhao H, Zhou J, Kang L, et al. Tunable two-dimensional left-handed material consisting of ferrite rods and metallic wires. Optical Express, 2009, 17: 13373~13380.
[43] Bi K, Zhou J, Zhao H, et al. Tunable dual-band negative refractive index in ferrite-based metamaterials. Optical Express, 2013, 21: 10746.
[44] Poo Y, Wu R X, He G H, et al. Experimental verification of a tunable left-handed material by bias magnetic fields. Applied Physics Letters, 2010, 96: 161902.
[45] Liu S, Chen W, Du J, et al. Manipulating negative-refractive behavior with a magnetic field. Physical Review Letters, 2008, 101: 157407.
[46] Gu Y, Wu R X, Yang Y, et al. Self-biased magnetic left-handed material. Applied Physics Letters, 2013, 102(23): 231914.
[47] Ziolkowski R W, Kipple A D. Application of double negativematerials to increase the power radiated by electrically small antennas. IEEE Transactions on Antennas Propagation, 2003, 51: 2626~2640.
[48] Enoch S, Tayeb G, Sabouroux P, et al. A metamaterialfor directive emission. Physical Review Letters, 2002, 89: 213902.
[49] Wu R X, Zhu J, Tan L R, et al. Lower RCS directional antenna by left-handed material. Applied Physics A - Materials Science & Processing, 2012, 109:955~959.
[50] Khazan W M, Rieck C T, Kuzel P, et al. Terahertz surface resistance of high temperature superconducting thin films. Jounal of Applied Physics, 2000, 87:2984~2988.
[51] Ricci M, Orloff N, Anlage S M. Superconducting metamaterials. Applied Physics Letters, 2005, 87: 034102.
[52] Singh R, Tian Z, Han J, et al. Cryogenic temperatures as a path toward high-Q terahertz metamaterials. Applied Physics Letters, 2010, 96: 071114.
[53] Gu J, Singh R, Tian Z, et al.Superconductor terahertz metamaterial. Applied Physics Letters, 2010, 97: 071102.
[54] Jin B B, Zhang C H, Engelbrecht S, et al. Low loss and magnetic field-tunable superconducting terahertz metamaterial. Optics Express, 2010,18 (16): 17504~17509.
[55] Harris S E. Electromagnetically induced transparency. Physics Today, 1997, 50: 36.
[56] Fleischhauer M, Imamoglu A, Marangos J P. Electromagnetically induced transparency: Optics in coherent media. Reviews Modern Physics, 2005, 77: 633.
[57] Zhang S, Genov D A, Wang Y, et al. Plasmon-induced transparency in metamaterials. Physical Review Letters, 2008,101: 047401.
[58] Wu J B, Jin B b, Wan J, et al. Superconducting terahertz metamaterials mimicking electromagnetically induced transparency. Applied Physics Letters, 2011,99 (16): 161113.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 梁晋1,2,梁吉业1,2*,赵兴旺1,2. 一种面向大规模社会网络的社区发现算法[J]. 南京大学学报(自然科学版), 2016, 52(1): 159 -166 .
[2] 汪 璐,贾修一*,顾雁囡. 三支决策贝叶斯网络分类器[J]. 南京大学学报(自然科学版), 2016, 52(5): 833 .