南京大学学报(自然科学版) ›› 2013, Vol. 49 ›› Issue (5): 644–649.

• • 上一篇    下一篇

基于粒分布的加速训练方法

张宇1,王文剑1,2,郭虎升1   

  • 出版日期:2014-02-08 发布日期:2014-02-08
  • 作者简介:(山西大学计算机与信息技术学院,太原,030006; 2. 山西大学计算智能与中文信息处理教育部重点实验室,太原,030006)
  • 基金资助:
    国家自然科学基金(60975035,61273291),山西省回国留学人员科研资助项目(2012-008)

An SVM accelerated training approach based on granular distribution

Zhang Yu1, Wang Wenian1,2, Guo Hu-Sheng1   

  • Online:2014-02-08 Published:2014-02-08
  • About author:(School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China; 2. Key Laboratory of Computational Intelligence and Chinese Information Processing (Shanxi University), Ministry of Education, Taiyuan, 030006, China)

摘要: 粒度支持向量机(Granular support vector machine, GSVM)通过选取粒的代表点构成精简训练集以提高支持向量机(Support vector machine, SVM)的学习效率,然而选取个别代表点有可能丢失部分重要分类信息,导致模型泛化能力不高。针对这一问题,提出基于粒分布的GSVM(Distribution based GSVM, DGSVM)加速训练方法,该方法依照粒内正负样本分布选取粒代表点,根据粒的混合度将这些代表点分为精简训练样本集和修正集,使用精简训练样本集训练得到分类器,用修正集迭代优化分类器。本质上DGSVM是用少量难分的样本训练快速得到初始分类器,然后再进行进一步调整。在标准数据集上的实验结果表明DGSVM方法可以在保证算法学习效率的同时提高分类器的泛化能力。

Abstract: complexity of SVM is highly dependent on size of data set. Granular support vector machine (GSVM) produces the reduced training set by selecting representative points of granules in order to improve the learning efficiency of support vector machine (SVM). However, the selection of individual representative points may likely lose part of the important classification information, which will lead to poor model generalization performance. To solve this problem, this paper presents a distribution based GSVM (DGSVM) to accelerate the training process. It selects representative points according to the distribution of positive and negative samples in the granules, which will be divided into the reduced training sample set and modified set by the measure of mixing degree of granules. Then the initial classifier can be obtained by the reduced training sample set, and the modified set is used to further optimize the classifier. Naturally, DGSVM obtains initial classifier with those difficult classification samples, and then modify classifier gradually. The experiment results on UCI benchmark datasets demonstrate that DGSVM model can improve the generalization performance of greatly with high learning efficiency synchronously

[1] Vapnik V. Statistical learning theory. New York: Wiley, 1998, 493~520.
[2] Platt J C. Sequential minimal optimization: A fast algorithm for training support vector machines. Technical Report, MSR-TR-98-14, 1999.
[3] Keerthi S S, Shevade S K. SMO algorithm for least-squares SVM formulations. Neural Computation, 2003, 15(2): 487~507.
[4] Zhang H Y,?Yi Y, Wu?J S. Network intrusion detection system based on incremental support vector machine. Contemporary Challenges and Solutions in Applied Artificial Intelligence Studies in Computational Intelligence, 2013, 489: 91~96.
[5] Horng S J, Su M Y, Chen Y H, et al. A novel instrusion detection system based on hierarchical clustering and support vector machines. Expert Systems with Applications, 2011, 38(1): 306~313.
[6] Wang W J, Guo H S, Jia Y F, et al. Granular support vector machine based on mixed measure. Neurocomputing, 2013, 101: 116~128.
[7] Bai L F, Wang W J, Guo H S. A novel support vector machine active learning strategy. Journal of Nanjing University (Natural Sciences), 2012, 48(2): 172~181. (白龙飞,王文剑,郭虎升. 一种新的支持向量机主动学习策略. 南京大学学报(自然科学), 2012, 48(2): 172~181).
[8] Ding S F, Qi B J. Research of granular support vector machine. Artificial Intelligence Review, 2012, 38: 1~7.
[9] Tang Y C, Jin B, Zhang Y Q. Granular support vector machines with association rules mining for protein homology prediction. Artificial Intelligence in Medicion, 2005, 35: 121~134.
[10] Tang Y C. Granular support vector machines based on granular computing, soft computing and statistical learning. Georgia Stage University: College of Arts and Sciences, 2006.
[11] Liu Y, Song H Z. Study on constructing support vector machine with granular computing. Procedia Engineering, 2011, 15:3098~3102.
[12] Liu X D, Luo B, Chen Z Q. Optimal model selection for support vector machines. Journal of Computer Research and Development, 2005, 42(2): 567~581.(刘向东骆斌陈兆乾. 支持向量机最优模型选择的研究. 计算机研究与发展2005, 42(4): 576~581)
[13] Wang W J, Xu Z B, Lu V Z, et al. Determination of the spread parameter in the Gaussian kernel for classification and regression. Neurocomputing, 2003, 55(3-4): 643~663
[14] Liao S Z, Jia L. Constructing a new spherical kernel function. Journal of Computer Research and Development, 2007, 44(z2): 398~402.(廖士中贾磊一类新的球面核函数的构造. 计算机研究与发展2007, 44(z2): 398~402).
[15] Wu T, He H G, He M K. Interpolation based Kernel function’s construction. Chinese Journal of Computers, 2003 ,26(8): 990~996. (吴涛贺汉根贺明科基于插值的核函数构造. 计算机学报2003, 26(8): 990~996).
[16] UCI Machine Learning Repository. http://archive.ics.uci.edu/ml, 2009-10-16.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!