南京大学学报(自然科学版) ›› 2013, Vol. 49 ›› Issue (1): 86–94.

• • 上一篇    下一篇

 用于水声信道均衡的双参可调最小均方算法

 伍飞云,李芳兰,周跃海,童峰
  

  • 出版日期:2015-09-24 发布日期:2015-09-24
  • 作者简介: (厦门大学水声通信与海洋信息技术重点实验室,厦门,361005)
  • 基金资助:
     National Natural Science Foundation o1 China(11274259) ,Natural Science Foundation o1 Fujian Province
    China(2011J01275),Science and Technology Project of Xiamen City (3502z20113008)

 Dual-parameter adjustable least mean square algorithm for
underwater acoustic channel equalization*

 Wu Fei-Yun,Li Fang- Lan,Zhou Yue- Hai,Tong Feng**   

  • Online:2015-09-24 Published:2015-09-24
  • About author: (Key Laboratory of Underwater Acoustic Communication and Marine Information Technology MOE.
    Xiamen University,Xiamen 361005,China)

摘要:  作为一种降低因水声多途引起的码间干扰的有效手段,水声信道均衡技术正引起广泛关注.
现有的算法中,最小均方算法及其变型因其计算量低而被广为应用.而采用平行滤波器组的变步长法可
提高该算法在时变环境中的性能,却未出现该类算法在水声信道动态阶数下的性能研究.本文提出将滤
波器步长和长度双参数进行调节的平行滤波器组用于时变水声信道均衡.双参数调整机制能有效增强
算法对时变水声信道的容忍度.仿真和真实数据的实验验证了新算法的优越性.

Abstract:  As a potentially effective method to mitigate inter symbol interference caused by multi-path, channel
equalization of underwater acoustic communication has attracted considerable attention. Among existing algorithms that can
be found in the literature,the classic least mean square(LMS)and various variants of it arc of particular interest for practical
implementation due to their low computational complexity. However, as the variable step size as well as the parallel filter
bank structure can improve the performance of LMS type algorithms under time varying environment,there is a lack of in-
vestigation on their adaptability to the dynamic order of underwater acoustic channels, In this paper,a new dual-parameter,
adjustable method is presented which embeds the variable step size and filter length into the parallel filter bank LMS algo-
rithm for equalizztion of time varying underwater acoustic channel.The mechanism of dual parameter(step size and filter
length)adjustment ensures that the proposed algorithm has better tolerance upon the time variations caused by either specific  coefficients or the order of the channel response. Both numerical simulations and real data experiments show that the per- formance of the new method outperforms the classic methods.

[1]Kilfoyle D B, Baggeroer A B. The State of art in un- derwater acoustic telemetry, IEEE Journal of Oceanic
Engineering,2000,25(1):4一24.
[2]Akyildiz I,Pompili D, Melodia T.Underwater acoustic sensor networks; Research challenges. Ad
Hoc Networks,2005,3(3)_257一279.
[3]Chitre M A. A higlr-frequency warm shallow water acoustic communications channel model and mcas
urements. Journal of the Acoustical Society of Amer- ica,2007,5(122):2580一2586.
[4]Domingo M C. Overview of channel models for un- derwater wireless communication networks. Physical
Communication, 2008,1(3):163一182.
[5]Li Y, Zhou S, Stojanovic M Multicarrier communica- dons over underwater acoustic channels with nonuni-
form Doppler shifts, IEEE Journal of Oceanic Engi- neering,2008,33(2):198一209.
[6]Stojanovic M. Efficient processing of acoustic signals for higlrrate information transmission over sparse
underwater channels. Physical Communication,2008,1(2):146一161.
[7]Chitre M S,Shahabodecn S,Stojanovic M. Underwater acoustic communications and networking; Rcccnt ad-
vances and future challenges.M;rine Technology Soci ety,2008,42(1):103一116.
[8]Singer A C, Nelson J K, Kozat S S. Signal processing for underwater acoustic communications, IEEE Com-
munications Magazinc,2009,47(1):90一96.
[9]Preisig J C. Performance analysis of adaptive equalizx tion for coherent acoustic communications in the times
varying ocean environment. Journal of the Acoustical Society of America,2005,118(1);263一278.
[10]Stojanovic M, Proakis J,Catipovic J. Performance of higlr-rate adaptive equalization on a shallow water a-
coustic channel. Journal of the Acoustical Society of America, 200,117(3):1173一1185.
[11]Zai-Kuo W. Fast hierarchical least mean square algo-rithm. Signal Processing Letters, 2001,8(11):289~291.
[12]Malcolm D M. Performance of the hierarchical LMS algorithm, IEEE Signal Processing Letters, 2002,9 (12):436一437.
[13]Vitor H. Analysis of the hierarchical LMS algorithm. IEEE Signal Processing Letters,2003,10(3);78一81.
[14]Liu T,Gazor S. An adaptive variable stclrsize pre filter bank algorithm for colored environments. Pro-
ceedings of IEEE international Conference on Acoustics,Speech,and Signal Processing,6(6):357 ~360.
[15]Liu T,Gazor S. A variable step-size pre-filter-bank  adaptive algorithm, IEEE Transactions on Speech
and Audio Processing,2005,13(5):905一916.
[16]Anubha G,Shiv D J. Variable step-rsizc LMS algorithm for fractal signals, IEEE Zi-ansactions on Signal Pro-
cessing, 2008, 56 (4):1411一1420.
[17]Yuantao G, Kun T,Huijuan C. LMS algorithm with gradient descent filter length, IEEE Signal
Processing Letters, 2004,11(3)305一307.
[18]Yu G, Colin F N C. An LMS style variable tap length algorithm for structure adaptation, IEEE
Transactions on Signal Processing, 2005,53(7): 2400一2407.
[19]Xusheng W, David G M C, Bernard M, et al. A  unified approach to dynamic length algorithms for
adaptive linear equalizers, IEEE Transactions on Signal Processing,2007,55(3):908一920.
[20]Porter M B,McDonald V K,Baxlcy P A,et al. Signa- lEx;linking environmental acoustics with the signaling
schemes. Proceedings of IEEE International Conference on Oceans,2000,1:595一600.


No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!