南京大学学报(自然科学版) ›› 2012, Vol. 48 ›› Issue (5): 582–591.

• • 上一篇    下一篇

 认知水声通信中的分布式压缩频谱感知算法

 左加阔1,包永强2,赵力1,邹采荣1,陶文凤1
  

  • 出版日期:2015-07-07 发布日期:2015-07-07
  • 作者简介:(1.东南大学教育部水声重点实验室,南京,210096;2.南京工程学院通信工程系,南京,210096)
  • 基金资助:
    National Natural Science Foundation of China(60872073,61075068. 60976017),Autonomous Fund of
    Science and Technology on Acoustic Antagonizing Laboratory (09ZD. 2)

 Distributed compressive spectrum sensing in cognitive
underwater acoustic communication*

 Zuo Jia一Kuo 1**,Bao Yong一Qiang2,Zhao Li1,Zou Cai一Rong 1,Van Phuong Dao1   

  • Online:2015-07-07 Published:2015-07-07
  • About author: (1 .Key Laboratory of Underwater Acoustic signal Processing of Ministry of Education
    Southeast University, Nanjing, 210096,China;
    2. School of Communication Engineering, Nanjing institute of Technology, Nanjing, 210093,China)

摘要:  在认知水声通信中,频谱感知是动态频谱接入和动态频谱共享的基础.相比于陆地环境,水下环境变化剧烈:如严重的频率选择性衰落、低的声波传播速度和多径效应等.因此,许多可用于认知无线电的频谱感知算法不能直接用于认知水声通信.除此之外,水下用户或节点均用电池供电,而基于融合中心(融合中心可能与感知用
户相隔很远)的频谱感知算法需要将各个感知用户的感知数据传送到融合中心,由于功率受限并且计算资源有限,该方法几乎是不可行的.类似于无线通信系统,水声通信系统中的频谱使用率也很低,这使得水声通信信号在频域是稀疏的.研究结果表明,压缩感知算法可以有效的恢复稀疏信号.基于此,为了克服前述困难,木文提出了分布式压缩频谱感知算法.在该算法中,多个认知用户通过协作的方式获得空间分集增益来克服水声信道的严重衰落,并利用联合稀疏性来增强恢复稀疏信号的能力.通过分布式计算,该算法将协作频谱感知转化为去中心的局部优化问题,对于每个感知用户而言,只需要与其相邻的感知用户进行数据交互,这大大减少了每个感知用户的计算量和传输数据所需的功率消耗.木文对所提出的算法进行了仿真,并与其他算法进行了比较.实验结果证明了木算法在认知水声通信中检测频谱的有效性.

Abstract:  Spectrum sensing is a key technology for dynamic spectrum access and dynamic spectrum sharing in cognitive underwater acoustic communication(CUAC)networks. Because the underwater environment is very different from terrestrial environment,such as severe frequency-dependent attenuation, low speed of wave propagation and excessive multipath delay spread,many spectrum sensing techniques in cognitive radio cannot be simply transplanted to CUAC. In under water, nodes or users in underwater arc battery operated. Spectrum sensing based on fusion center (FC) may be infcasible due to power constraints and limited computation resources, because nodes or users need transfer all data to the FC (possibly located far away).Similar to terrestrial wireless communication networks, due to the low percentage of spectrum occupancy in underwater acoustic communication, the signals arc also very sparse in the frequency domain. Recent researches have shown that sparse signals can be reliably recovered based on compressive sensing. Taking this advantage,a distributed cooperative compressive spectrum sensing approach is proposed to overcome the underwater channel fading, the limited power and computing resources. To obtain spatial diversity gains against underwater channel fading, and to enhance sparsity recovery ability by exploiting joint sparse structure, multiple secondary users collaborate to sense spectrum in the proposed scheme. In our new cooperative spectrum detection model,spectrum sensing boils down to recover the sparse energy vectors from multiple measurement vectors. To reduce the data acquisition costs, distributed computation and local optimization is utilized to solve the spectrum sensing in a distributed manner, In this way, the new algorithm entails low computation and power overhead per secondary users,and affordable data transferring among on-hop neighbors. Benefiting from the distributed computation and spatial diversity, this new method is able to attain high sensing performance
at a reasonable computation and power overhead. Simulation results corroborate the effectiveness of the proposed method in detecting the spectrum holes in underwater acoustic environment.

[1]Emma J.The application of software radio tech niques to underwater acoustic communications. OCEANS, Aberdeen, 2007,1一6.
[2]IanFA,Dario P,Tommaso M. Underwater a coustic sensor networks; research challenges. Ad Hoc Networks,200,3(3):257一279.
[3]Li X J,Zhang Y,Du G H,et al. An invcstiga tion on chaotic behavior of two forms of ray e quations. Journal of Nanjing University(Natu
ral Sciences),2000,36(3):383一386.
[4]Li X J,Zhang Y,Du G H. Study on chaotic be- havior of underwater acoustic ray model. Jour- nal of Nanjing University(Natural Sciences),
1999, 35(4):454~460.(李小俊,张宇,杜功焕.水声射线模型混沌行为的研究.南京大学学报(自然科学),1999, 35(4):454~460).
[5]Wang Y G,Tang J S, Pan Y,et al.Underwa to commumcation goes cogmtme. Quebec City, 2008,1一4.
[6]Tan H K,Winston K. Seah G, et al. Explo ring cognitive techniques for bandwidth manage ment in integrated underwater acoustic systems.
OCEANS, Quebec City, 2008,1一7.
[7]Nicola B, Paolo C, Michele Z. Cognitive spec trum access for underwater acoustic communica dons. IEEE international Conference on Com
mnmcation,Beijing, 2008,518一523.
[8]Sadia A,Huseyin A. Cognitive intelligence in UAC channel parameter identification, measure- ment,estimation, and environment mapping.
OCEANS, Bremen, 2009,1一14.
[9]Sadia A,Huseyin A. Cognitive intelligence in the mapping of underwater acoustic communica-tion envmonments to channel odels.OCEANS,Bremen,2009,1~9.
[10]Dustin T,Zainul C,Jonathan F, et al. Spec- trum signaling for cognitive underwater acoustic channel allocation, INFOCOM IEEE Conference
on Computer Communications Workshops,San Diego,2010,1一6.
[11]Sonncnschein A,Fishman P M. Radiometric detection of spread spectrum signals in noise of uncertainty power. IEEE Transactions on Aero-
space and Electronic Systems, 1992,28(3): 654一660.
[12]Gardner W A. Exploitation of spectral redun- dancy in cyclostationary signals, IEEE Signal Processing Magazine, 1991,8(2):14一36.
[13]Zeng Y H,Liang Y C. Eigenvalue-based spec- trum sensing algorithms for cognitive radio. IEEE Transactions on Communication,2009, 57(6). 178一1793.
[14]Donoho D L. Compressed sensing, IEEE Transactions on Information Theory, 2006,52 (4):1289一1306.
[15]Duarte M F, Sarvotham S, Baron D, et al. Dis- tributed compressed sensing of jointly sparse signals. IEEE Asilomar Conference on Signals,
Systems and Computers, Asilomar, 2005,1537一1541.
[16]Candes E J,Wakin M Y. An introduction to compressive sampling, IEEE Signal Processing Magazine,2008,25(2);21一30.
[17]Tian Z.,Giannakis G B. Compressed sensing for wideband cognitive radios. International Conference on Acoustics, Speech,and Signal
Processing, Hawaii,2007,1357一1360.
[18]Polo Y L, Wang Y,Pandharipande A,et al. Compressive wide-band spectrum sensing, In ternational Conference on Acoustics,Speech,
and Signal Processing, Taipei 2009,2337~2340.
[19]Wang Y,Ashish P,Yvan L P, et al. Distribu ted compressive wide-band spectrum sensing. Information Theory and Application Workshop
San Diego,2009,178一183.
[20]Zhi T, Erik B, Li W H,et al. Performance e- valuation of distributed compressed wideband sensing for cognitive radio Networks. Interna-
tional Conference on Information Fusion, Co- logne, 2008,1一8.
[21]Zhi T.Compressed wideband sensing in cooper- ative cognitive radio networks, IEEE Global Telecommunication Conference, New Orleans,2008,1一5.
[22]Zeng F Z, Li C,Zhi T. Distributed compressive spectrum sensing in cooperative multihop cogni- tive networks. IEEE Journal Selected Topics in
Signal Processing, 2011,5(1):37一48.
[23]Havary-Nassab V, Hassan S, Valaee S. Com- pressive detection for wide-band spectrum sens- ing, International Conference on Acoustics
Speech, and Signal Processing, Texas, 2010 3094一3097.
[24]http://www.dei.unipd.it/wdyn/?IDsezione=5216.
[25]Xiao L,Boyd S, Kim S. Distributed average consensus with least-mean-square deviation. Journal of Parallel and Distributed Computing, 2007,67(1):33一46.









No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!