南京大学学报(自然科学版) ›› 2012, Vol. 48 ›› Issue (1): 8–14.

• • 上一篇    下一篇

板一腔祸合对腔体共振频率的影响*

 张晓排1,2,邱小军**   

  • 出版日期:2015-05-15 发布日期:2015-05-15
  • 作者简介:(1.近代声学教育部重点实验室,南京大学声学研究所,南京,210093
    2.大连交通大学交通运输工程学院,大连,116028)
  • 基金资助:
     国家自然科学基金(11004100),南京大学近代声学教育部乖点实验室(1004),中央高校基木科研业务费专项基金(1101020402)

 The effect of the plate-cavity coupling on the resonance frequency of the cavity

 Zhang Xiao- Pai 1.2,Qiu Xiao一Jun1
  

  • Online:2015-05-15 Published:2015-05-15
  • About author: 1. Key Laboratory of Modern Acoustics, institute of Acoustics, Nanjing University, Nanjing, 210093,China;
    2. School of Traffic and Transportation Engineering, Dalian Jiaotong University, Dalian, 116028,China)

摘要:  基于模态展开法建立板一腔藕合系统受迫振动响应模型,以分析藕合后腔控模态共振频率的偏移.理论分析和仿真发现,与小阻尼近刚性壁面比,弹性板相对较小的声质量使得藕合后腔体共振频
率发牛偏移,偏移量的大小和为一向与板一腔藕合系统的模态藕合系数、板的声质量和板模态共振频率有关.若腔共振频率高于板共振频率,藕合后腔控模态共振频率增加;若腔共振频率低于板共振频率,藕合
后腔控模态共振频率减小;通常最大模态藕合系数决定了腔共振频率偏移量的大小.

Abstract: The forced response of an acoustirstructural coupled system has been modeled to analyze the resonance frequency shift of a cavity controlled mode.Thcoretical analysis and simulations show that unlike the infinite
acoustical mass of the approximately rigid wall with a slight damping, the finite acoustical mass of the plate allows the platrcavity couple,resulting in the resonance frequency shift of the cavity controlled mode.The degree and
direction of the shift arc affected by the modal coupling coefficient,the acoustical mass of the plate and the resonance frequency of the plate. if the resonance frequency of the uncoupled cavity mode is higher than the resonance
frequency of the uncoupled plate mode, the cavity controlled frequency increases after the plate mode and the cavity mode are coupled,and vice versa. Usually the maximal modal coupling coefficient plays a dominant role to the
degree of the resonance frequency shift of the cavity controlled mode among all coupling coefficients of the cavity with the plate modes.

[1]Du G H,Zhu Z M, Gong X F. Foundation of acoustics. Nanjing; Nanjing University Press 2001, 446.(杜功换,朱哲民,龚秀芬.声学基础.南京:南京大学出版社,2001, 446).
[2]Morse P M. Some aspects of the theory of room acoustics. Journal of the Acoustical Society of America. 1939 .11(1).56-66.
[3]Chen Y,Liu J J,Qiu X J. A coherent model of sound propagation in long enclosures with dif- ferent acoustics boundaries. Journal of Nanjing University( Natural Sciences),2010,46(1):
26~33.(陈妍,刘嘉俊,邱小军.不同声学边界长空间内声场传播的相十模型.南京大学学报(自然科学),2010, X6(1): 26}-33).
[4]Pierce A D. Acoustics. NEw York; McGraw-Hill,288.
[5]Pope L D, Wilby J F. Band-limited power flow into enclosures. Journal of the Acoustical Socie ty of America, 1977,62(4):906一911.
[6]Pan J,Bies D A.The effect of fluid-structural coupling on sound waves in an enclosure;Theo- retical part. Journal of the Acoustical Society of America. 1990,87(2),691一707
[7]Pan J.The response of an acoustic-structural coupled system. Journal of the Acoustical Socie- ty of America, 1992,91(2):949一956.
[8]Pretlove A J. Free vibrations of a rectangular panel backed by a closed rectangular cavity. Journal of Sound and Vibration, 196,2(3): 197一209.
[9]Khilman T.Sound radiation into a rectangular room. Applications to airborne sound transmis- sion in buidings. Acustica, 1967,18(1):11一20.
[10]Jin G Y,Yang T J,Liu Z G, et al. Analysis of structural-acoustic coupling of an enclosure sur- rounded by flexible panel. Acta Acustica, 2007,32(2); 178 -188.(靳国永,杨铁军,刘志刚等.
弹性板结构封闭声腔的结构一声藕合特性分析.声学学报,2007, 32(2); 178-188).
[11]Dowell E H,Gorman U F, Smith D A. Acous- toclasticity; general theory, acoustic natural modes and forced response to sinusoidal excita- tion, including comparisons with experiment. Journal of Sound and Vibration, 1977,52(4): 5 19一542.
[12]Fahy F, Gardonio P. Sound and structural vi- bration. Jordan Hill:Academic Press. 2007,415~422
[13]Morse P M,Ingard K U.Theoretical acoustics. New York.Theoretical acoustics. McGraw-Hill,1968,63~69








No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!