南京大学学报(自然科学版) ›› 2011, Vol. 47 ›› Issue (3): 253–264.

• • 上一篇    下一篇

运用水力层析法刻画潜水含水层的非均质性

 朱珺峰 1 , 叶天齐 2 , 毛德强 2   

  • 出版日期:2015-04-10 发布日期:2015-04-10
  • 作者简介: ( 1. 肯塔基大学肯塔基地质调查局, 美国; 2. 亚利桑那大学水文水资源系, 美国)
  • 基金资助:
     Strategic Environmental Research and Development Program (SERDP)

Hydraulic tomography to characterize heterogeneity of unconfined aquifers *

 Zhu J un -Feng 1 ** , T ian -Chyi / Jim0 Yeh 2 , Mao De-Qiang 2
  

  • Online:2015-04-10 Published:2015-04-10
  • About author: ( 1. Kentucky Geological Survey, U niversity of Kentucky, Lexington, KY, USA;
    2. Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ, USA)

摘要:  解析模型是分析潜水含水层抽水试验的最广泛使用的工具. 抽水试验过程中的地下水流在潜水面附近是高度非线性的. 由于对排水和降深过程的简化, 这些解析模型不能充分地描述潜水含水层中的非线性水流. 此
外, 这些模型假定含水层是均质的, 而实际的含水层本质上都是非均质的. 最近出现的水力层析法是一种经济有效的刻画含水层水力特性参数空间分布的方法. 水力层析法采用数值模拟的方法去熔合多个在不同地点进行的抽水
试验的数据去更详细地刻画含水层水力特性参数. 在这项研究中, 我们扩展水力层析法的概念到潜水含水层. 为了准确地描述水力层析调查过程中的潜水含水层的地下水流, 本文采用基于混合形式的 Richards 方程的三维饱和-
非饱和流模型. 利用饱和以及非饱和带的水头变化观测数据, 连续线性估计法被采用来估算渗透系数, 贮水率, 以及土壤水分模型参数的空间变化. 本文用敏感度分析探讨了水头和不同水力特性参数之间的关系, 然后用一个人
工合成的区域规模的三维潜水含水层去测试水力层析法. 测试显示该方法能有效地地刻画潜水含水层水力特性的时空变化. 水力层析法能够刻画饱和以及非饱和带的渗透系数, 但是对贮水率刻画局限于饱和带, 对土壤水分模型
参数的刻画局限于非饱和带. 本文对水力层析法对潜水含水层的应用的其他局限和潜在的改进也进行了讨论.

Abstract:  Analytical models are the most widely used tools for analyzing pumping tests in unconfinedaquifers. Ground water flow induced by a pumping test in an unconfined aquifer is highly nonlinear near
the water table. T hese analytical models are inadequate to describe the nonlinear flow due to their simplified representations of the drainage process and drawdowns at the water table. Moreover, these
models assume aquifer homogeneity while real aquifers are inherently heterogeneous. Recently emerged hydraulic tomography ( HT ) is a cost -effective method for mapping spatial distribution of aquifer
hydraulic properties. HT takes advantage of the power of numerical models and fuses information from multiple cross -hole tests conducted at different locations to image aquifer properties in greater details. In
this study, we extend the HT concept to unconfined aquifers. To accurately describe the groundwater flow due to a HT survey in an unconfined aquifer, a fully three dimensional variably saturated flow model
based on mixed form of the Richards equation is used. Pressure responses in both saturated and unsaturated zones are used to estimate spatial variations of hydraulic conductivity, specific storage, and a
soil water constitutive model parameter through a successive linear estimator. A sensitivity analysis is performed to investigate the relation between pressures and different parameters. The HT method for
unconfined aquifers is then tested in a synthetic three dimensional field scale aquifer. The test shows that the proposed HT method can effectively map spatial variations of hydraulic parameters in an unconfined
aquifer. While characterizing hydraulic conductivity in both saturated and unsaturated regimes is possible, characterization of specific storage is limited in the saturated flow regime and characterization of
the soil water constitutive model parameter is limited in the unsaturated flow regime. The other limitations of HT for unconfined aquifers and potential improvements are also discussed.

 [ 1 ] Wu C M , Yeh T C J, Zhu J, et al. Traditional analysis of aquifer tests: Comparing apples to oranges?, Water Resources Research, 2005, 41, W09402, doi: 1011029/ 2004WR003717.
[ 2 ] Liu S, Yeh T C J, Gardiner R. Effectiveness of hydraulic tomography: sandbox experiments. Water Resources Research, 2002, 38 ( 4) : 10 1 1029/2001WR000338.
[ 3 ] Straface S, Yeh T C J, Zhu J, et al. Sequential aquifer tests at a well field, Montalto Uffugo Scalo, Italy. Water Resources Research, 2007, 43, W07432, doi: 1011029/ 2006WR005287.
[ 4 ] Neuman S P. Stochastic continuum representa - tion of fractured rock permeability as an alterna - tive to the REV and fracture network concepts. In: Proceedings of the US symposium Rock Me - chanics, 28PthP; 1987, 533~ 561.
[ 5 ] Gottlieb J, Dietrich P. Identification of the per - meability distribution in soil by hydraulic tomo - graphy. Inverse Problems, 1995, 11: 353~ 360.
[ 6 ] Vasco D W, Keers H, Karasaki K. Estimation of reservoir properties using transient pressure data: An asymptotic approach. Water Re - sources Research, 2000, 36( 12): 3447~ 3465.
[ 7 ] Yeh T C J, Liu S. Hydraulic tomography: De - velopment of a new aquifer test method. Water Resources Research, 2000, 36(8): 2095~ 2105.
[ 8 ] Bohling G C, Zhan X, Butler Jr J J, et al. Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogene- i ties. Water Resources Research, 2002, 38(12) , 1324, doi: 10 1 1029/2001WR001176.
[ 9 ] Brauchler R, Liedl R, Dietrich P. A travel time based hydraulic tomographic approach. Water Resources Research, 2003, 39(12) , 1370, doi: 10 1 1029/2003 WR002262.
[ 10] Zhu J, Yeh T C J. Characterization of aquifer heterogeneity using transient hydraulic tomo - graphy. Water Resources Research, 2005, 41, W07028, doi: 1011029/ 2004WR003790.
[ 11] Zhu J, Yeh T C J. Analysis of hydraulic tomo - graphy using temporal moments of drawdown -re - covery data. Water Resources Research, 2006, 42, W02403, doi: 10 11029/ 2005WR004309.
[ 12] Illman W A, Liu X, Craig A. Steady -state hy - draulic tomography in a laboratory aquifer with deterministic heterogeneity: Mult- i method and multiscale validation of K tomograms. Journal of Hydrology, 2007, 341: 222~ 234.
[ 13] Illman W A, Craig A J, Liu X. Practical issues in imaging hydraulic conductivity through hy - draulic tomography. Ground Water, 2008, 46 ( 1) : 120 ~ 132, doi: 10 1 1111/j. 1745 - 658412007 1 00374. x.
[ 14] Liu X, Illman W A, Craig A J, et al. Labora - tory sandbox validation of transient hydraulic tomography. Water Resources Research, 2007, 43, W05404, doi: 10 1 1029/2006WR005144.
[ 15] Theis C V. The relation between lowering the piezometric surface and the rate and duration of discharghe of a well using groundwater storage. Transactions of American Geophysical Union, 16 th annual meeting, 1935, Pt 2, 519~ 524.
[ 16] Boulton N S. Unsteady radial flow to a pumped well allowing for delayed yield from storage. In- ternational Association of Scientific Hydrology Publication (Rome), 1954, 37: 472~ 477.
[ 17] Boulton N S. Analysis of data from non -equilib- rium pumping tests allowing for delayed yield from storage. Proceedings of the Institution of Civil Engineers, 1963, 26: 469~ 482.
[ 18] Dagan G. A method of determining the permea - bility and effective porosity of unconfined aniso - tropic aquifers. Water Resources Research, 1967, 3: 1059~ 1071.
[ 19] Neuman S P. Theory of flow in unconfined aq - uifers considering delayed response of the water table. Water Resources Research, 1972, 8: 1031~ 1045.
[ 20] Brutsaert W. Immiscible multiphase flow in groundwater hydrology: a computer analysis of the well flow problem. Ph. D. dissertation, Colorado State University, Fort Collins, 1970.
[ 21] Streltsova T D. ( Unsteady radial flow in an un - confined aquifer. Water Resources Research, 1972, 8: 1059~ 1066.
[ 22] Streltsowa T D. Unconfined aquifer and slow drainage. Journal of Hydrology, 1972, 16: 117~ 123.
[ 23] Lakshminarayana V, Rajagopalan S P. Type - curve analysis of time -drawdown data for par - tially penetrating wells in unconfined anisotropic aquifers. Ground Water, 1978, 16: 328~ 333.
[ 24] Nwankwor G I, Cherry J A, Gillham R W. A comparative study of specific yield determina - tions for a shallow sand aquifer. Ground Water, 1984, 22: 764~ 772.
[ 25] Endres A L, Jones J P, Bertrand E A. Pum - ping induced vadose zone drainage and storage in an unconfined aquifer: a comparison of analyt- i cal model predictions and field measurements. Journal of Hydrology, 2007, 335: 207~ 218.
[ 26] Prickett T A. T ype -curve solution to aquifer tests under water -table conditions. Ground Wa - ter, 1965, 3(3): 5~ 14.
[ 27] Bonnet M, Forkasiewicz J, Peaudecerf P. M† thodes d. interpr† tation de pumpages d. essai en nappe libre. Bureau de Recherches G† ologiques et M ini† res Rep† rtoire, 70SGN 359 HYD, Orleans, France, 1970.
[ 28] Neuman S P. Analysis of pumping test data From anisotropic unconfined aquifers consider - ing delayed gravity response. Water Resources Research, 1975, 11(2): 329~ 342.
[ 29] Neuman S P. On methods of determining spe - cific yield. Ground Water, 1987, 25: 679~ 684.
[ 30] Narasimhan T N, Zhu M. T ransient flow of water to a well in an unconfined aquifer: Appl- i cability of some conceptual models. Water Re - sources Research, 1993, 29: 179~ 191.
[ 31] Akindunni F F, Gillham R W. Unsaturated and saturated flow in response to pumping of an un - confined aquifer: numerical investigation of de - layed drainage. Ground Water, 1992, 30: 873~ 884.
[ 32] Moench A F, Garabedian S P, LeBlanc D R. Est- i mation of hydraulic parameters from an unconfined aquifer test conducted in a glacial outwash deposit, Cape Cod, Massachusetts. US Geological Survey Professional Paper, 2001, 1629.
[ 33] Moench A F. Importance of the vadose zone in analyses of unconfined aquifer tests. Ground ater, 2004, 42: 223~ 233.
[ 34] Moench A F. Estimation of hectare - scale soi- l moisture characteristics from aquifer -test data. Journal of Hydrology, 2003, 281: 82~ 95.
[ 35] Tartakovsky G D, Neuman S P. T hree -dimen- sional saturated -unsaturated flow with axial symmetry to a partially penetrating well in a compressible unconfined aquifer. Water Re - sources Research, 2007, 43, W01410, doi: 1011029/ 2006WR005153.
[ 36] Zhang J, Yeh T C J. An iterative geostatistical inverse method for steady flow in the vadose zone. Water Resources Research, 1997, 33(1): 63~ 71.
[ 37] Hughson D L, Yeh T C J. An inverse model for three -dimensional flow in variably saturated por - ous media. Water Resources Research, 2000, 36(4): 829~ 839.
[ 38] Xiang J, Yeh T C J, Lee C H, et al. A simu- l taneous successive linear estimator and a guide for hydraulic tomography analysis. Water Re - sources Research, 2009, 45, W02432, doi: 1011029/ 2008WR007180.
[ 39] Gutjahr A. Fast Fourier transforms for random field generation, project report, contract 4 -R58 - 2690 R, N. M. Institute of Mineral and T ech- nology, Socorro, 1989.
[ 40] Yeh T C J, Liu S, Glass R J, et al. A geosta - tistically based inverse model for electrical resis- tivity surveys and its applications to vadose zone hydrology. Water Resources Research, 2002, 38(12) , 1278, doi: 10 1 1029/ 2001WR001204.
[ 41] Wu J C, Lu L. Uncertainty analysis for ground - water modeling. Journal of Nanjing University ( Natural Sciences) , 2011, 47( 3) : 227~ 234.
(吴吉春, 陆 乐. 地下水模拟不确定性分析. 南京大学学报( 自然科学), 2011, 47( 3): 227~ 234) .


No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!