南京大学学报(自然科学版) ›› 2011, Vol. 47 ›› Issue (2): 147–154.

• • 上一篇    下一篇

 基于流式细胞仪分析超声造影剂包膜特性的实验研究*

 齐水宝, 崔炜程, 屠 娟** , 陈伟中
  

  • 出版日期:2015-04-09 发布日期:2015-04-09
  • 作者简介: (南京大学物理学院声科学与工程系, 近代声学( 教育部)重点实验室, 南京, 210093)
  • 基金资助:
     国家自然科学基金( 10704037, 10974093, 11074123) , 教育部博士点( 新教师) 基金 ( 20070284070)

 Microbubble shell characterization using flow cytometry

 Qi Shui Bao, Cui Wei Cheng, T u J uan, Chen Wei Zhong
  

  • Online:2015-04-09 Published:2015-04-09
  • About author: (Departmentt of Acoustics, School of Physics, Key Laboratory of Modern Acoustics ( Ministry of Education) ,
    Nanjing University, Nanjing, 210093, China)

摘要:  超声造影剂是由薄膜层包裹气体形成的微米量级的包膜气泡. 随着医学超声技术的发展, 超声造影剂在诊断及治疗超声领域的应用得到了广泛的关注. 超声造影剂的包膜特性(如剪切模量及剪切
粘度)是与其应用紧密相关的重要参数, 对于决定气泡的许多功能特性都是非常重要的. 本文在 Mie 散射理论基础上, 利用进过改进的流式细胞仪测量了单个 Definity 
超声造影剂微泡的动力学行为, 并对其包膜特性进行了分析. 通过对实验测量得到的微泡动力学响应数据进行气泡动力学拟合来可以确定
不同驱动声压(95- 333 kPa 之间) 下造影剂微泡的包膜特性. 结果显示: 造影剂微泡包膜的剪切粘度随微泡平衡半径的增大而增大, 随剪切速率的增大而减小; 而包膜的弹性系数不随微泡的大小而变化.

Abstract:  Experiments were performed to size and evaluate shell parameters for individual Definity   ultrasound contrast microbubbles using a modified flow cytometer. Light scattering was modeled using Mie theory, and applied
to calibration beads to calibrate the system. The size distribution and population were measured directly from the flow cytometer. The shell parameters ( shear modulus and shear viscosity) were quantified at different acoustic
pressures ( from 95 - 333 kPa) by fitting microbubble response data to a bubble dynamics model. The size distribution of Definity   is consistent with manufacturer specifications. The shell shear viscosity increases with
increasing equilibrium microbubble size, and decreases with increasing shear rate. The observed trends are independent of driving pressure amplitude. The shell elasticity does not vary with microbubble size. The results
suggest that a modified flow cytometer can be an effective tool to characterize the physical properties of microbubbles, including size distribution, population, and shell parameters.

 [ 1 ] Goldberg B B, Raichlen J S, Forsberg F. Ultrasound contrast agents?Basic Principles and clinical applications. 2 nd edition, London: Martin Dunitz, 2001.
[ 2 ]  Ferrara K, Pollard R, Borden M. Ultrasound microbubble contrast agents: Fundamentals and application to gene and drug delivery. Annual Review of Biomedical Engineering, 2007, 9: 415~ 447.
[ 3 ]  Mitragotri S. Innovation?Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nature Reviews Drug Discovery, 2005, 4(3): 255~ 260.
[ 4 ] Stride E, Saffari N. On the destruction of microbubble ultrasound contrast agents. Ultrasound in Medicine and Biology, 2003, 29( 4): 563~ 573.
[ 5 ]  Guan J F, Matula T J. Using light scattering to measure the response of individual ultrasound contrast microbubbles subjected to pulsed ultrasound in vitro. Journal of the Acoustical Society of America, 2004, 116(5): 2832~ 2842.
[ 6 ] Tu J, Guan J F, Qiu Y Y, et al, Estimating the shell parameters of SonoVue microbubbles using light scattering. Journal of the Acoustical Society of America, 2009, 126 ( 6 ): 2954~ 2962.
[ 7 ]  Gorce J M, Arditi M, Schneider M. Influence of bubble size distribution on the echogenicity of ultrasound contrast agents A study of Sonovue, Investigative Radiology. 2000, 35 ( 11 ): 661~ 671.
[ 8 ]  Chang P H, Shung K K, Wu S J, et al. , 2ndharmonic imaging and harmonic Doppler measurements with Albunex. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 1995, 42(6): 1020~ 1027.
[ 9 ]  Sboros V, Glynos E, Pye S D, et al, Nanointerrogation of ultrasonic contrast agent microbubbles using atomic force microscopy. Ultrasound in Medicine and Biology, 2006, 32( 4): 579~ 585.
[ 10]  Morgan K E, Allen J S, Dayton P A, et al. Experimental and theoretical evaluation of microbubble behavior: Effect of transmitted phase and bubble size. IEEE T ransactions on Ultrasonics Ferroelectrics and Frequency Control, 2000, 47( 6) : 1494~ 1509.
[ 11]  Dayton P A, Morgan K E, Klibanov A L, et al. Optical and acoustical observations of the effects of ultrasound on contrast agents. IEEE T ransactions on Ultrasonics Ferroelectrics and Frequency Control, 1999, 46(1): 220~ 232.
[ 12]  van der Meer S M, Dollet B, Voormolen M M, et al. , Microbubble spectroscopy of ultrasound contrast agents. Journal of the Acoustical Socie ty of America, 2007, 121(1): 648~ 656.
[ 13]  Doinikov A A, Haac J F, Dayton P A. Modeling of nonlinear viscous stress in encapsulating shells of lipid~ coated contrast agent microbubbles. Ultrasonics, 2009, 49( 2) : 269~ 275.
[ 14] Shapiro H M. Practical flow cytometry. Wiley, 2003: 190~ 194.
[ 15]  Aden A L, Kerker M. Scattering of electromagnetic waves from 2 concentric spheres. Journal of Applied Physics, 1951, 22 ( 10) : 1242~ 1246.
[ 16]  Marston P L. Colors observed when sunlight is scattered by bubble clouds in seawater. Applied Optics, 1991, 30( 24): 3479~ 3484.
[ 17]  Marston P L, Billette S C, Dean C E. Scattering of light by a coated bubble in water near the critical and Brewster scattering angles. Ocean Optics IX, 1988, 925: 308.
[ 18]  Bohren C F, Huffman D R. Absorption and Scattering of light by small particles. New York: Wiley and Sons, 1988.
[ 19] Kerker M. T he scattering of light and other e lectromagnetic radiation. New York: Academic, 1969.
[ 20]  Guan J F. Light scattering and imaging techniques applied to sonoluminescence and ultra sound contrast bubbles. Electrical Engineering, University of Washington, Seattle, WA, 2005.
[ 21] Dejong N. Cornet R, Lancee C T. Higher harmonics of vibrating gas?filled microspheres. 1. Simulations. Ultrasonics, 1994, 32 ( 6 ): 447~ 453.
[ 22]  Dejong N, Cornet R, Lancee C T. Higher harmonics of vibrating gas?filled microspheres. 2. Measurements. U ltrasonics, 1994, 32 ( 6 ): 455~ 459.
[ 23]  Church C C. T he effects of an elastic solid -surface layer on the radial pulsations of gas-bubbles. Journal of the Acoustical Society of America, 1995, 97(3) : 1510~ 1521.
[ 24] Chatterjee D, Sarkar K. A newtonian rheological model for the interface of microbubble contrast agents. Ultrasound in Medicine and Biology, 2003, 29( 12): 1749~ 1757.
[ 25] Hoff L. Acoustic characterization of contrast agents for medical ultrasound imaging. Dordrecht, Netherlands: Kluwer Academic, 2001,
[ 26]  Marmottant P, van der Meer S, Emmer M, et al. A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture. Journal of the Acoustical Society of America, 2005, 118(6) : 3499~ 3505
[ 27]  Flynn H G. Cavitation Dynamics. 1. Mathematical Formulation. Journal of the Acoustical Society of America, 1975, 57(6): 1379~ 1396.
[ 28] Flynn H G, Church C C. Transient pulsations of small gas?bubbles in water. Journal of the Acoustical Society of America, 1988, 84 ( 5): 1863~ 1876.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!