采用因子分析的方法恢复了 1963? 2006 年间南京大气降水氚浓度年平均值, 在年尺度下分析其变化规律. 根据国际原子能机构/ 世界气象组织(IAEA/WMO) 监测网南京站的资料, 结合 2005-
2007 年实测数据, 在月尺度下分析了南京地区降水中氚浓度的变化特征, 并对产生的原因进行了探讨. 结果表明: 20 世纪 60 年代热核实验所产生的氚在南京地区通过自然衰减、 降雨等作用, 已经降低至自
然水平. 降水中的氚浓度在季风控制时期存在雨量效应, 其他时期与雨量关系不明显. 对比一年中各月降水的氚浓度, 南京地区降水中氚浓度存在季节效应. 多种因素综合影响下的季节效应表现为降水中氚
浓度春季最高, 夏季最低, 秋冬介于其中.
Abstract
We have improved, using the World Meteorological Organization/International Atomic Energy Agency ( WM O/ IAEA) tritium dataset, a global model function for predicting the annual mean concentration of decay
corrected bomb tritium in precipitation over the time period 1960- 2005. The model consists of two reference time histories or factors, calculated from a factor analysis of the zonally averaged global data set, and global maps of the
two spatial coefficient values with the factors. By combining the reference curves with the appropriate coefficentvalues taken from these maps, an estimate of the tritium time history for the Nanjing region can be produced.
In this paper diagnostic analysis of the samples of precipitation amount was measured in Nanjing from 1988 to 1990 and from 2005 to 2007. From 1988 to 1990, the samples of precipitation are monitored by WMO/ IAEA. And
from 2005 to 2007, the samples of precipitation are monitored by us. From 2005 to 2007, there are 19 samples. It is because no rain in some months. The following useful information about the distribution characteristics of the
atmospheric precipitation tritium of Nanjing and the time -space variation law of the concentration field of the atmospheric precipitation. The results show that: 3 H ( tritium), which was from atmospheric nuclear weapon tests,
has been reduced to natural value through natural attenuation and precipitation. Rainfall amount has a significanteffect on 3 H content in precipitation in monsoon seasons. In the other seasons, the relationship between 3 H content
and rainfall amount is not clear. We could also find that 3 H content changes with season by comparing the each month content in precipitation in one year. The reasons of these phenomena are discussed in this paper. There are
two reasons why rainfall amount sometimes has no obvious effect on 3 H content. The first reason is moisture that affects rainfall amount is from different sources. When kinds of moisture take different paths to reach Nanjing at
same time, the relationship between 3 H content in precipitation and rainfall amount is very confused. T he other reason is data shortage in winter. Seasonal effect is composed by many factors. The percolation effect in tropopause
leads to the peak value of 3 H content in spring. The rainfall amount effect leads to the valley value of 3 H content in summer. Temperature is another important factor. Local evaporation changes with temperature. The evaporation
changes lead to the changes of the precipitation-evaporation balance in different seasons. These variations have a significant impact on isotopic fractionation. In this paper, we summarized comprehensively the progress and result for tritium in Nanjing precipitation and
analyzed systematically regularity of space ?time distribution on the basis of monitoring information from the concentration of tritium in Nanjing precipitation. This research provided the base data and theoretical basis for
environmental isotope that is applied to oceanography, hydrometeorology, climatology and hydrogeology.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[ 1 ] Guo L Z, Shu L S, Lu H F, et al. A syntheti-cal review on research advances on terrane tec-tonics in China. Journal of Nanjing University
( Natural Sciences) , 2000( 36): 1~ 17. ( 郭令智, 舒良树, 卢华复等. 中国地体构造研究进展综述. 南京大学学报(自然科学), 2000( 36): 1~ 17) .
[ 2 ] Pang Z H, Huang T M, Chen Y N. Diminished groundwater recharge and circulation relative to degrading riparian vegetation in the middle T ar-im River, Xinjiang Uygur, Western China. Hydrological Proesses, 2010( 24): 147~ 159.
[ 3 ] Chen Z Y, Nie Z L, Zhang G H, et al. Envi-ronmental isotopic study on the recharge and residence time of groundwater in the Heihe Riv-er Basin, northwestern China. Hydrogeology Journal, 2006(14) : 1635~ 1651.
[ 4 ] Zhu G F, Li Z Z, Su Y H, et al. Hydrogeo-chemical and isotope evidence of groundwater e-volution and recharge in Minqin Basin, North-west China. Journal of Hydrology, 2007( 333): 239~ 251.
[ 5 ] Zhu G F, Su Y H, Feng Q. T he hydrochemical characteristics and evolution of groundwater andsurface water in the Heihe River Basin, North-west China. Hydrogeology Journal, 2008( 16) : 167~ 182.
[ 6 ] Wu B J. The restoration of tritium concentra-tion in precipitation in China. Hydrogeology and Engineering Geology, 1986( 4) : 38~ 42. ( 吴秉钧. 我国大气降水中氚的数值推算. 水文地质工程地质, 1986(4): 38~ 42).
[ 7 ] Tian H, Wang W K, Cao Y Q, et al. Tritium age calculation of groundwater in Guanzhong Basin. Journal of Xi! an University of Science
and Technology, 2007, 27( 3): 382~ 385. ( 田华, 王文科, 曹玉清等. 关中盆地地下水氚年龄的计算. 西安科技大学学报, 2007, 27( 3) : 382~ 385) .
[ 8 ] Scott C D, David M G, William J J. A model function of the global bomb tritium distribution in precipitation. Journal of Geophysical Re -search, 1992, 97(C4) : 5481~ 5492.
[ 9 ] Vitvar T, Aggarwal P K, Mcdonnell J J. Iso-topes in the Water Cycle: Past, Present and Fu-ture of a Developing Science. Berlin: Springer, 2005, 151~ 169.
[ 10] International Atomic Energy Agency/ World M eteorological Organization. Global Network of Isotopes in Precipitation. http: // isohis. iaea. org, 2006.
[ 11] Wang H C. Introduction to Isotope Hydrology. Beijing: Geological Press, 1991, 71~ 73. (王恒纯. 同位素水文地质概论. 北京: 地质出版社, 1991, 71~ 75).
[ 12] Wang Z Y, Ding Y H. Climatic characteristics of rainy seasons in China. Chinese Journal of Atmospheric Sciences, 2008, 32( 1): 1~ 13. ( 王遵娅, 丁一汇. 中国雨季的气候学特征. 大气科学, 2008, 32( 1) : 1~ 13) .
[ 13] Wei K Q, Lin R F. The influence of the mon-soon climate on the isotopic composition of pre-cipitation in China. Chinese Journal of Geo-chemistry, 1994, 23( 1) : 33~ 41. ( 卫克勤, 林
瑞芬. 论季风气候对我国雨水同位素组成的影响. 地球化学, 1994, 23( 1) : 33~ 41) .
[ 14] Rozanski K, Gonfiantini R, Araguas -Araguas L. Tritium in the global atmosphere: distribu-tion patterns and recent trends. Journal of Physics, 1991(17) : 523~ 536.
[ 15] Xu Z, Liu Y H, Wang Z S, et al. Relationships between stable isotopes in precipitation in Wolong and M onsoon Activity. Environmental Science, 2008, 29(4) : 1007~ 1013. ( 徐 振,
刘玉虹, 王中生等. 卧龙降水稳定同位素与季风活动 的 关 系. 环 境 科 学, 2008, 29( 4): 1007~ 10013) .
[ 16] Xie A, M ao J Y, Song Y Y, et al. Climatologi-cal characteristics of moisture transport over Yangtze River Basin. Journal of Applied Mete-orological Science, 2002, 13(1): 67~ 77.
( 谢安, 毛江玉, 宋焱云等. 长江中下游地区水汽输送的气候特 征. 应用气 象学报, 2002, 13 (1): 67~ 77).
[ 17] Zhang L, Wang Y, Liu F L. Changes of tritium concentration in precipitation of China in two decades. South ?North Water Transfers and Water Science and Technology, 2008, 6( 6): 94~
96. ( 张 琳, 王 莹, 刘福亮. 近二十年我国大气降水氚浓度及其变化. 南水北调与水利科技, 2008, 6( 6) : 94~ 96) .
[ 18] Liu J D. Fluorine concentration changing tentency study of China atmospheric precipitation in the recent ten years. Site Investigation Science and Technology, 2001, 4: 11~ 13. ( 刘进
达. 近十年来中国大气降水氚浓度变化趋势研究. 勘察科学技术, 2001, 4: 11~ 13) .
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金( 40872155)
{{custom_fund}}