南京大学学报(自然科学版) ›› 2024, Vol. 60 ›› Issue (2): 345–355.doi: 10.13232/j.cnki.jnju.2024.02.015

• • 上一篇    

基体配比对VIHPS制备GO⁃CF/EP复合材料微观组织与形状记忆性能的影响

马玉钦1(), 吕晋书1, 阮鸥2, 徐津3, 任斌1, 王刚锋1, 庞利沙1   

  1. 1.道路施工技术与装备教育部重点实验室, 长安大学工程机械学院,西安,710064
    2.威睿电动汽车技术(宁波)有限公司,宁波,315336
    3.极氪汽车(宁波杭州湾新区)有限公司,宁波,315300
  • 收稿日期:2023-10-13 出版日期:2024-03-30 发布日期:2024-03-29
  • 通讯作者: 马玉钦 E-mail:yqma@chd.edu.cn
  • 基金资助:
    公共大数据国家重点实验室开放基金(PBD 2022?019);长安大学中央高校基本科研业务费专项资金(300102253105);陕西省自然科学基础研究计划(2022JM?265);教育部产学合作协同育人项目(220506298133407);河南省教育厅2023年度高等学校重点科研项目(23A460033);陕西省“十四五”教育科学规划2022年度课题(SGH22Y1274)

Effect of matrix ratio on microstructure and shape memory properties of GO⁃CF/EP composites prepared by VIHPS

Yuqin Ma1(), Lü Jinshu1, Ou Ruan2, Jin Xu3, Bin Ren1, Gangfeng Wang1, Lisha Pang1   

  1. 1.key Laboratory of Road Construction Technology and Equipment of MOE, College of Engineering Machinery, Chang'an University, Xi'an, 710064, China
    2.Weirui Electric Vehicle Technology (Ningbo) Co. Ltd. , Ningbo, 315336, China
    3.Jike Automobile (Ningbo Hangzhou Bay New Area) Co. Ltd. , Ningbo, 31530, China
  • Received:2023-10-13 Online:2024-03-30 Published:2024-03-29
  • Contact: Yuqin Ma E-mail:yqma@chd.edu.cn

摘要:

碳纤维混杂增强复合材料由于具有重量轻、可设计性强等诸多优点,广泛用于汽车、海洋、航空航天等行业.根据固化剂与环氧树脂的配比化学原理,计算出石墨烯?碳纤维混杂增强树脂基(GO?CF/EP)复合材料的最佳配比为1∶5,并采用真空浸渗热压成型工艺(VIHPS制备1∶2~1∶7共六个配比的试样,结合形状记忆性能测试及微观形貌的观察,得到固化剂与环氧树脂实际最佳配比.实验结果表明,GO?CF/EP复合材料性能主要取决于体系中交联度的大小,交联度越大,复合材料的形状记忆性能越好,微观组织形貌也较理想.当基体配比为1∶5时,GO?CF/EP复合材料体系中交联度最大,微观形貌呈现均匀致密的状态,形状固定率最大,为95.90%;形状回复率最大,为95.40%;形状回复时间最短,为80.30 s;形状回复力最大,为9.48 N.当基体配比为1∶2或1∶7时,固化剂过量或不足,交联度较小,微观组织形貌中有大量的基体聚集区,其形状记忆性能下降,形状固定率及回复率也相应减小,分别为82.99%,81.66%,81.91%,78.75%;形状回复力分别只有5.20 N和5.50 N.

关键词: 石墨烯?碳纤维混杂增强树脂基复合材料, 交联度, 真空浸渗热压成型工艺, 基体配比, 形状记忆性能

Abstract:

Due to their benefits including light weight and strong designability,carbon fiberhybrid reinforced composites have been used in numerous industries including the automotive,marine,and aerospace sectors. According to the ratio formula of epoxy resin and curing agent,the optimal ratio of graphene?carbon fiber hybrid reinforced resin matrix (GO?CF/EP)composite was calculated as 1∶5,and six ratios of 1∶2~1∶7 were prepared by vacuum infiltration hot pressing process (VIHPS). Combined with shape memory performance test and microscopic morphology observation,it was possible to achieve the ideal ratio of curing agent to epoxy resin. The experimental findings demonstrate that the degree of cross?linking in the system has a major influence on the characteristics of GO?CF/EP composites. The higher the degree of cross?linking,the better the shape memory performance and the ideal microstructure of the composites. When the matrix ratio is 1∶5,the microstructure of the GO?CF/EP composite system is uniform and dense,the cross?linking degree is the highest,the shape fixation rate is the highest (95.90%),the shape recovery rate was the largest 95.40%. Shape recovery time was the shortest,80.30 s; the shape recovery force is the largest,9.48 N. When the matrix ratio is 1∶2 or 1∶7,the curing agent is excessive or insufficient,the cross?linking degree is small,and there are a large number of matrix accumulation region in the microstructure. The shape memory performance decreased,and the shape fixation rate and recovery rate decreased correspondingly,which were 82.99%,81.66%,81.91% and 78.75%,respectively. The shape recovery force is only 5.20 N and 5.50 N,respectively.

Key words: graphene?carbon fiber hybrid reinforced resin matrix composite, crosslinking degree, vacuum infiltration hot pressing process, matrix ratio, shape memory performance

中图分类号: 

  • O635.1

表1

实验的主要原材料"

原材料名称及型号厂家

PAN聚丙烯腈基T700型

碳纤维布

日本东丽公司
E⁃51环氧树脂南通兴成复合材料有限公司
4,4'⁃二氨基二苯甲烷上海展云化学有限公司
无水乙醇(99%)江苏强胜功能性化工有限公司
GO(厚度为1 nm,片直径为0.2~10 μm,纯度99%)深圳穗横科技股份有限公司

图1

含GO的混合溶液的制备流程示意图"

图2

真空浸渗热压系统结构图1.温度计;2.混合固化溶液;3.磁力搅拌器机;4.真空度测量计;5.加热棒;6.复合材料;7.温度传感器;8.真空泵;9.加热电阻丝;10.压力传感器;11.电磁阀;12.液压机"

表2

4,4'?二氨基二苯甲烷的相关参数"

化学式
分子式C13H14N2
相对分子量M198.26
活泼氢原子数nH4
固化剂质量(g)W=198.26/4×0.51=25.27

图3

形状记忆性能测试装置示意图及固定90°实物图(a)折弯装置示意图;(b)固定装置示意图;(c)固定90°实物图"

图4

形状回复力测试装置示意图"

图5

固化剂与环氧树脂配比为1∶2~1∶7时GO?CF/EP复合材料的微观形貌(a) 1∶2;(b) 1∶3;(c) 1∶4;(d) 1∶5;(e) 1∶6;(f) 1∶7"

图6

配比为1∶2时的GO?CF/EP复合材料微观组织形貌图(a)与浸渗示意图(b)"

图7

配比为1∶3和1∶4时的GO?CF/EP复合材料微观组织形貌图与浸渗示意图(a) 1∶3; (b) 1∶4;(c)浸渗示意图"

图8

配比为1∶5时的GO?CF/EP复合材料微观组织形貌图(a)与浸渗示意图(b)"

图9

配比为1∶6和1∶7时的GO?CF/EP复合材料微观组织形貌图与浸渗示意图(a) 1∶6; (b) 1∶7; (c)浸渗示意图"

图10

GO?CF/EP复合材料的形状固定率及回复率柱状图"

图11

GO?CF/EP复合材料的形状回复时间及回复力曲线图"

图12

环氧基与含活泼氢(伯胺及仲胺)的化合物反应"

1 游晋. 形状记忆材料的力学性能研究与盘绕式空间伸展臂的研制. 硕士学位论文. 上海:上海交通大学,2017.
You J. Development of a callable space mast and study on mechanical properties of shape memory materials. Master Dissertation. Shanghai:Shanghai Jiao Tong University,2017.
2 Gao H, Li J R, Xu F G,et al. Interpenetrating shape memory polyimide?polyaniline composites with electrical conductivity. Polymer Composites202344(7):4134-4141.
3 袁文华. 基于特殊晶相构筑形状记忆聚合物材料. 博士学位论文. 杭州:浙江大学,2022.
Yuan W H. Preparation of shape memory polymer materials based on unconventional crystalline phases. Ph.D. Dissertation. Hangzhou:Zhejiang University,2022.
4 Ozair H, Rehman M A U, Baluch A H,et al. Impact energy absorption analysis of shape memory hybrid composites. Journal of Composites Science20226(12):365.
5 Mu T, Liu L W, Lan X,et al. Shape memory polymers for composites. Composites Science and Technology,2018,160:169-198.
6 杨增辉,张耀明,张新瑞,等. 高温形状记忆聚合物研究进展. 功能高分子学报202235(4):314-327.
Yang Z H, Zhang Y M, Zhang X R,et al. Research progress of high temperature shape memory polymers. Journal of Functional Polymers202235(4):314-327.
7 Liang X, Li X J, Tang Y,et al. Hyperbranched epoxy resin?grafted graphene oxide for efficient and all?purpose epoxy resin modification. Journal of Colloid and Interface Science2022,611:105-117.
8 王爽. 自增强环氧树脂复合材料的制备与性能研究. 博士学位论文. 北京:北京化工大学,2018.
Wang S. Preparation and performance of epoxy resin particle modified epoxy resin composite materials. Ph.D. Dissertation. Beijing:Beijing University of Chemical Technology,2018.
9 王恩亮. 石墨烯/环氧树脂形状记忆复合材料制备与性能研究. 硕士学位论文. 杭州:浙江理工大学,2019.
Wang E L. Fabrications and properties of graphene/epoxy memory composites. Master Dissertation. Hangzhou:Zhejiang Sci?Tech University,2019.
10 Zhang L X, Jiao H Q, Jiu H F,et al. Thermal,mechanical and electrical properties of polyurethane/(3?aminopropyl) triethoxysilane functionalized graphene/epoxy resin interpenetrating shape memory polymer composites. Composites Part A:Applied Science and Manufacturing,2016,90:286-295.
11 周露. 耐高温形状记忆环氧树脂基复合材料性能研究. 硕士学位论文. 沈阳:沈阳航空航天大学,2018.
Zhou L. Study on properties of high temperature resistant shape memory epoxy resin matrix com?posites. Master Dissertation. Shenyang:Shenyang Aerospace University,2018.
12 易凯,耿东兵,杨智勇,等. 树脂含量对F?8H3/602芳纶复合材料性能的影响. 宇航材料工艺201545(2):59-63.
Yi K, Geng D B, Yang Z Y,et al. Effect of resin content on performances of aramid fiber reinforced composites. Aerospace Materials & Technology201545(2):59-63.
13 张代军,陈俊,包建文,等. 树脂基体中热塑性树脂含量对碳纤维环氧复合材料Ⅱ型层间断裂韧性的影响. 材料工程202149(6):178-184.
Zhang D J, Chen J, Bao J W,et al. Effects of thermoplastic resin content on mode?Ⅱ interlaminar fracture toughness of carbon fiber reinforced epoxy composite. Journal of Materials Engineering202149(6):178-184.
14 柴红梅,汪鹏,王雷,等. 固化剂含量对RTM用环氧树脂体系固化性能的影响. 玻璃钢/复合材料2009(6):48-49,76.
Chai H M, Wang P, Wang L,et al. Effect of curing agent content on RTM epoxy system curing properties. Fiber Reinforced Plastics/Compo?sites2009(6):48-49,76.
15 张集滕,李瑞. 树脂和固化剂含量对自硬呋喃树脂砂抗拉强度的影响. 铸造201261(11):1361-1362.
Zhang J T, Li R. Effects of furan resin and hardener contents on tensile strength of no?bake furan resin sand. Foundry201261(11):1361-1362.
16 夏凯欣. 真空浸渗制备AZ 91D/SiCP复合材料的性能研究. 硕士学位论文. 长春:吉林大学,2019. (Xia K X. Study on the properties of AZ 91
D/SiCP composites prepared by vacuum infiltration. Master Dissertation. Changchun:Jilin University,2019.
17 Wang A Y, Liu C, Hu L X,et al. Effects of processing on mechanical properties of B4C?graphene composites fabricated by hot pressing. Materials Science and Engineering:A,2021,808:140872.
18 王杰. 真空浸渗热压形状记忆复合材料及其性能研究. 硕士学位论文. 西安:西安电子科技大学,2021.
Wang J. Research on vacuum infiltration and hot?pressed shape memory composite material and its performance. Master Dissertation. Xi'an:Xidian University,2021.
19 Ma Y Q, Wang J, Zhao Y T,et al. A new vacuum pressure infiltration CFRP method and preparation experimental study of composite. Polymers202012(2):419.
20 Zhi L, Zhang C Q, Liu Z Z,et al. Flexible decorative wood veneer with high strength,wearability and moisture penetrability enabled by infiltrating castor oil?based waterborne polyurethanes. Composites Part B:Engineering2022230:1095202. DOI:10.1016/j.compositesb.2021.109502 .
21 Bajuri F, Mazlan N, Ishak M R. Water absorption analysis on impregnated kenaf with nanosilica for epoxy/kenaf composite. IOP Conference Series:Materials Science and Engineering2018405:012013. DOI:10.1088/1757-899x/405/1/012013 .
22 龚燕妮. 真空压力浸渗SiC/Al复合材料工艺过程数值模拟研究. 硕士学位论文. 北京:北京理工大学,2015.
Gong Y N. Study on numerical simulation of gas pressure infiltration SIC/Al ceramic matrix composites. Master Dissertation. Beijing:Beijing Institute of Technology,2015.
23 耿兆军. 环氧基碳纤维复合材料的形状记忆性能及其机理研究. 硕士学位论文. 北京:北京化工大学,2021.
Geng Z J. Study on shape memory performances and mechanisms of epoxy?based carbon fiber composites. Master Dissertation. Beijing:Beijing University of Chemical Technology,2021.
24 Ma Y Q, Wang J, Li S S,et al. Effect of molding temperature on shape memory performance of SMPC. Integrated Ferroelectrics2020209(1):30-39.
25 Guo H Y, Ma Y Q, Wang G F,et al. Effect of cyclic tests on the shape memory performance of GO?CF hybrid?reinforced SMPC. Polymer Composites202243(8):5076-5086.
26 孙鹤. 具有二阶段固化特征形状记忆环氧固化动力学及性能研究. 硕士学位论文. 哈尔滨:哈尔滨工业大学,2018.
Sun H. Study on curing kinetics and properties of epoxy with shape memory charac?teristics of two?stage curing. Master Dissertation. Harbin:Harbin Institute of Technology,2018.
27 刘雅芸. 形状记忆环氧树脂及其复合材料的性能与应用研究. 博士研究论文. 北京:中国地质大学(北京),2019.
Liu Y Y. Study on properties and application of shape memory epoxy (SMEP) and its composites. Ph.D. Dissertation. Beijing:China University of Geosciences (Beijing),2019.
28 Zhou J L, Zhang C Y, Cheng C,et al. Synergetic improvement of interlaminar fracture toughness in carbon fiber/epoxy composites interleaved with PES/PEK?C hybrid nanofiber veils. Advanced Fiber Materials20224(5):1081-1093.
29 Liu S Y, Yu M J, Feng Y J,et al. Simultaneous improvement of interfacial bonding and thermal resistance of carbonaceous fiber/silicone composite coatings modified with aniline?methyl?triethoxysilane. Progress in Organic Coatings2023183:107735. DOI:10.1016/j.porgcoat.2023.107735 .
30 Hu L, Cai Y, Yang W F,et al. Laser selective ablated multistep interfacing for enhanced adhesive bonding joints of carbon fiber reinforced polymer materials. Journal of Laser Applications202133(4):042005. DOI:10.2351/7.0000378 .
31 Wang D L, Zhang F L, Huang K,et al. Study on preparation and performance of advanced nano?modified epoxy asphalt. Journal of Applied Polymer Science2023140(14):e53688. DOI:10.1002/app.53688 .
32 张代军,陈俊,包建文,等. 树脂基体中热塑性树脂含量对碳纤维环氧复合材料压缩性能的影响. 复合材料科学与工程2021(5):31-36.
Zhang D J, Chen J, Bao J W,et al. Effects of thermoplastic resin content on longitudinal compressive performance of carbon fiber reinforced epoxy composites. Composites Science and Engineering2021(5):31-36.
33 Holmstr?m M, Wilhelmsson B. Respiratory symptoms and pathophysiological effects of occupational exposure to formaldehyde and wood dust. Scandinavian Journal of Work,Environment & Health,198814(5):306-311.
34 王建,吕建,徐晓伟,等. 固化剂含量对玻纤增强酚醛复合材料性能的影响. 塑料科技200937(7):82-85.
Wang J, Lv J, Xu X W,et al. Effect of curing agent content 011 properties of glass fiber reinforced phenolic resin composite. Plastics Science and Technology,200937(7):82-85.
35 隋微微. 环氧树脂基形状记忆复合材料的研究. 硕士学位论文. 哈尔滨:哈尔滨工业大学,2008.
Sui W W. Study on composites of shape memory epoxy resin. Master Dissertation. Harbin:Harbin Institute of Technology,2008.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!