南京大学学报(自然科学版) ›› 2024, Vol. 60 ›› Issue (2): 339–344.doi: 10.13232/j.cnki.jnju.2024.02.014

• • 上一篇    

基于OAM复用信号高效调制解调的声学超表面

刘智1, 黄保霖1, 林玮1(), 赵瑾瑜2   

  1. 1.南京航空航天大学物理学院,南京,211106
    2.安徽建筑大学数理学院,合肥,230601
  • 收稿日期:2024-01-05 出版日期:2024-03-30 发布日期:2024-03-29
  • 通讯作者: 林玮 E-mail:wlin@nuaa.edu.cn
  • 基金资助:
    安徽省自然科学基金(1908085QA39)

Acoustic metasurfaces for efficient modulation and demodulation of OAM multiplexed signals

Zhi Liu1, Baolin Huang1, Wei Lin1(), Jinyu Huang2   

  1. 1.College of Physics,Nanjing University of Aeronautics and Astronautics, Nanjing,211106,China
    2.School of Mathematics & Physics, Anhui Jianzhu University, Hefei, 230601, China
  • Received:2024-01-05 Online:2024-03-30 Published:2024-03-29
  • Contact: Wei Lin E-mail:wlin@nuaa.edu.cn

摘要:

轨道角动量(Orbital Angular Momentum,OAM)复用是提高声学通信系统数据容量的一种潜在解决方案,提出一种利用声学超表面对OAM复用信号进行调制和解调的方法,利用该方法对独立声轨道角动量(Acoustic Orbital Angular Momentum,AOAM)信号的幅度和相位进行分析,并通过仿真实现对AOAM信号的调制和解调.AOAM信号的相位和幅度提供正交自由度,通过设计合适的声学超表面并将其与二进制差分相位编码技术相结合,证明其可以实现AOAM复用信号的有效调制和解调.正交声学螺旋模态可防止模式耦合和串扰,从而增强声学多路复用.基于谐振的结构提供信号频率选择性,提高了交互效率,简化了终端设备,便于实现大容量声学通信系统的创建.

关键词: 声学超表面, 声轨道角动量, 声信号复用

Abstract:

Orbital angular momentum (OAM) multiplexing has been suggested as a potential solution to increase the data capacity of acoustic communication systems. A method of modulation and demodulation of OAM multiplexed signals using acoustic metasurfaces is proposed in this manuscript. The amplitude and phase of independent acoustic orbital angular momentum (AOAM) multiplexed signal provide orthogonal degrees of freedom. By designing appropriate acoustic metasurfaces and combining them with binary differential phase coding techniques,we demonstrated that efficient modulation and fast demodulation of AOAM multiplexed signals can be achieved. Orthogonal acoustic spiral modes prevent mode coupling and crosstalk,enhancing acoustic multiplexing. The resonance?based structure provides signal frequency selectivity,boosting efficiency and simplifying terminal equipment for practical applications,which leads to the creation of high?capacity acoustic communication systems.

Key words: acoustic metasurfaces, acoustic orbital angular momentum, acoustic signal multiplexing

中图分类号: 

  • O424

图1

由高度为h1的直管和四个高度为h3的亥姆霍兹谐振器组成的混合结构单元"

图2

通过八个独立单元传输的仿真结果"

图3

(a)透射系数T和(b)归一化有效波数的相移"

图4

单个单元结构的平面图(a)和单组声学超表面结构示意图(b)"

图5

(a)波导中声涡旋的产生(左)和传输(右);(b)在3430 Hz频率下产生的一阶声涡旋束在横截面处的相位分布(左)和归一化声压幅值(右)"

图6

探针接收的时域信号Sign1(带星号标记的蓝线)和Sign2(带圆圈标记的红线)"

图7

探针接收的目标信号(黑色线条)和输出信号(带星号标记的蓝色线条)"

图8

声学复用超表面解复用后恢复的信息"

1 Li X J, Li Y Z, Ma Q Y,et al. Principle and performance of orbital angular momentum communication of acoustic vortex beams based on single?ring transceiver arrays. Journal of Applied Physics,2020,127(12):124902.
2 Wang J, Yang J Y, Fazal I M,et al. Terabit free?space data transmission employing orbital angular momentum multiplexing. Nature Photonics,2012,6(7):488-496.
3 Yan Y, Xie G D, Lavery M P J,et al. High?capacity millimetre?wave communications with orbital angular momentum multiplexing. Nature Communications,2014,5(1):4876.
4 梁彬,程建春. 声波的“漩涡”——声学轨道角动量的产生、操控与应用. 物理,2017,46(10):658-668.
Liang B, Cheng J C. Acoustic vortices:Production,manipulation and application of acoustic orbital angular momentum. Physics,2017,46(10):658-668.
5 李聆声,范理,张淑仪,等. 基于石墨烯敏感层的高灵敏度声表面波氢气传感器性能优化. 南京大学学报(自然科学),2021,57(6):1006-1012.
Li L S, Fan L, Zhang S Y,et al. Performance optimization of a high?sensitivity surface acoustic wave hydrogen sensor based on a graphene?like sensitive layer. Journal of Nanjing University (Natural Science),2021,57(6):1006-1012.
6 Li S Q, Li X Y, Zhang L,et al. Efficient optical angular momentum manipulation for compact multiplexing and demultiplexing using a dielectric metasurface. Advanced Optical Materials,2020,8(8):1901666.
7 Shi C Z, Dubois M, Wang Y,et al. High?speed acoustic communication by multiplexing orbital angular momentum. Proceedings of the National Academy of Sciences of the United States of America,2017,114(28):7250-7253.
8 Nye J F, Berry M V. Dislocations in wave trains. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,1974,336(1605):165-190.
9 Ye L P, Qiu C Y, Lu J Y,et al. Making sound vortices by metasurfaces. AIP Advances,2016,6(8):085007.
10 Marston P L. Scattering of a Bessel beam by a sphere:Ⅱ. Helicoidal case and spherical shell example. The Journal of the Acoustical Society of America,2008,124(5):2905-2910.
11 Wang W, Liu J J, Liang B,et al. Controlling acoustic orbital angular momentum with artificial structures:From physics to application. Chinese Physics B,2022,31(9):094302.
12 Jiang X, Li Y, Liang B,et al. Convert acoustic resonances to orbital angular momentum. Physical Review Letters,2016,117(3):034301,DOI:10.1103/PhysRevLett.117.034301 .
13 Li Y, Jiang X, Liang B,et al. Metascreen?based acoustic passive phased array. Physical Review Applied,2015,4(2):024003.
14 Guo Z Y, Liu H J, Zhou H,et al. High?order acoustic vortex field generation based on a metasurface. Physical Review E,2019,100(5):053315.
15 Morse P M, Ingard K U. Theoretical acoustics. Princeton:Princeton University Press,1986.
16 Rayleigh J W S. Lindsay R B. The theory of sound. New York:Dover Publications,1945.
17 Molerón M, Serra?Garcia M, Daraio C. Acoustic Fresnel lenses with extraordinary transmission. Applied Physics Letters,2014,105(11):114109.
18 Liu D L, Waag R C. Propagation and backpropagation for ultrasonic wavefront design. IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,1997,44(1):1-13.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!