南京大学学报(自然科学版) ›› 2024, Vol. 60 ›› Issue (2): 328–338.doi: 10.13232/j.cnki.jnju.2024.02.013

• • 上一篇    

车内单座椅局部区域有源噪声控制研究

于洋, 李航, 邹海山(), 林志斌   

  1. 南京大学声学研究所,近代声学教育部重点实验室,南京,210093
  • 收稿日期:2023-12-10 出版日期:2024-03-30 发布日期:2024-03-29
  • 通讯作者: 邹海山 E-mail:hszou@nju.edu.cn
  • 基金资助:
    国家自然科学基金(11874218)

Research on active noise control in a specific area of a single seat in car cabins

Yang Yu, Hang Li, Haishan Zou(), Zhibin Lin   

  1. Key Laboratory of Modern Acoustics, Ministry of Education, Institute of Acoustics of Nanjing University, Nanjing, 210093, China
  • Received:2023-12-10 Online:2024-03-30 Published:2024-03-29
  • Contact: Haishan Zou E-mail:hszou@nju.edu.cn

摘要:

目前,汽车局部区域降噪主要通过有源降噪头枕来降低人耳处的噪声,但乘客的移动会影响降噪效果.结合人头跟踪系统可解决这一问题,代价是增加系统的复杂性和成本.以车门扬声器为次级声源,在副驾驶位置乘客头部周围较大的区域进行局部降噪,并优化误差传感策略提升其降噪性能.首先,建立轻度阻尼边界的闭空间声场有限元模型;然后,基于该模型研究了某一局部区域内取得3 dB降噪效果的频率上限、误差点数量和位置对降噪效果的影响以及误差点布放的优化问题;最后,在典型城市道路上进行不同车速下的有源噪声控制实验.结果表明,车速为50,60和80 km·h-1时,副驾驶头部区域内(0.4 m×0.4 m×0.2 m) 3 dB降噪的频率上限约为370 Hz,误差点位置对降噪效果有较大影响.采用遗传算法优化误差点选择可提高降噪性能,使用12个优选误差点即可达到使用75个均匀布放误差点的降噪效果.

关键词: 有源噪声控制, 局部区域降噪, 汽车路噪, 误差传感策略

Abstract:

The current method for local noise control in automobiles primarily involves active headrests to reduce the noise around the passengers' ears.However,passengers' movement deteriorates the noise reduction performance. To address this issue,a head?tracking system has been combined with the active noise control system at the cost of increased complexity and expenses. Therefore,this paper investigates local noise control in a larger area around the passengers' head in the front passenger seat using the door speakers as secondary sources,and optimizes error sensing strategy to improve the noise reduction performance. Firstly,a finite element model of the lightly damped enclosure is established. Then based on this model,the upper limit frequency of 3 dB noise reduction in the target area is investigated,and the influence of the number and positions of error sensors on the noise reduction performance is also discussed,as well as the optimization of the arrangement of error sensors is carried out. Finally,real vehicle experiments are conducted on a typical urban road at different vehicle speeds. It is shown that,the upper frequency limit of 3 dB noise reduction in the passengers' head region (0.4 m×0.4 m×0.2 m) at the front seat is approximately 370 Hz at speeds of 50,60,and 80 km·h-1. The placement of error sensors has a large impact on noise reduction performance,and using a genetic algorithm to optimize the arrangement of error sensors improves the noise reduction performance. Using 12 optimized error sensors can achieve the same noise reduction performance as using 75 uniformly distributed error sensors.

Key words: active noise control, local control, road noise, error sensing strategy

中图分类号: 

  • O429

图1

有限元模型示意图:(a)初级声源分布;(b)车门扬声器位置和评价区域(a) distribution of primary sources, (b) door speaker locations and evaluation areas"

图2

有源降噪前后平均声压级"

图3

局部区域、局部区域外和全区域的平均降噪量"

图4

均匀分布的误差点位置"

图5

误差点均匀分布的有源降噪性能"

图6

误差点在边界相对均匀分布"

图7

基于遗传算法的最优误差点分布"

图8

不同误差点分布的降噪量"

表1

不同误差点分布情况的平均降噪量 (dB)"

分布方式2个误差点4个误差点12个误差点27个误差点75个误差点
均匀分布6.58.111.712.412.5
优化分布7.78.812.3--
边界均匀分布5.66.19.9--

图9

频率为200 Hz时,不同误差点分布的残余声场声压级分布图"

图10

测量传声器位置示意图"

图11

车门扬声器照片"

图12

副驾驶位测量传声器照片"

图13

副驾驶区域包含所有75个测点的平均降噪量"

图14

车速60 km·h-1时采用不同误差点配置的降噪结果"

表2

不同速度下各种误差点配置的副驾驶区域的平均降噪量 (dB)"

放置方式均匀分布外层均匀分布优选
误差点个数2412277524122412
速度(km·h-1)502.12.93.95.45.61.82.33.52.53.54.1
602.52.64.86.06.12.43.04.42.83.95.6
801.93.64.25.85.91.82.63.62.53.84.5

图15

车速为60 km·h-1,目标区域降噪前后的声场分布"

1 Samarasinghe P N, Zhang W, Abhayapala T D. Recent advances in active noise control inside automobile cabins:Toward quieter cars. IEEE Signal Processing Magazine201633(6):61-73.
2 Qatu M S, Abdelhamid M K, Pang J,et al. Overview of automotive noise and vibration. International Journal of Vehicle Noise and Vibration20095(1-2):1-35.
3 Rafaely B, Elliott S J, Garcia?Bonito J. Broadband performance of an active headrest. The Journal of the Acoustical Society of America1999106(2):787-793.
4 Nelson P A, Elliott S J. Active control of sound. London,UK:Academic Press,1992,354-355.
5 Elliott S J, Joseph P, Bullmore A J,et al. Active cancellation at a point in a pure tone diffuse sound field. Journal of Sound and Vibration1988120(1):183-189.
6 Garcia?Bonito J, Elliott S J. Local active control of diffracted diffuse sound fields. The Journal of the Acoustical Society of America199598(2):1017-1024.
7 Garcia?Bonito J, Elliott S J, Bonilha M. Active cancellation of pressure at a point in a pure tone diffracted diffuse sound field. Journal of Sound and Vibration1997201(1):43-65.
8 Liu L C, Kuo S M, Zhou M C. Virtual sensing techniques and their applications∥2009 International Conference on Networking,Sensing and Control. Okayama,Japan:IEEE,2009:31-36.
9 Jung W, Elliott S J, Cheer J. Local active control of road noise inside a vehicle. Mechanical Systems and Signal Processing2019,121:144-157.
10 Han R, Wu M, Gong C,et al. Combination of robust algorithm and head?tracking for a feedforward active headrest. Applied Sciences20199(9):1760.
11 邹海山,邱小军. 复杂声学环境中人耳附近空间有源降噪研究综述. 物理学报201968(5):054301.
Zou H S, Qiu X J. A review of research on active noise control near human ear in complex sound field. Acta Physica Sinica201968(5):054301.
12 Montazeri A, Poshtan J, Kahaei M H. Optimal placement of loudspeakers and microphones in an enclosure using genetic algorithm∥Proceedings of 2003 IEEE Conference on Control Applications,2003. Istanbul,Turkey:IEEE,2003:135-139.
13 Diamantis Z G, Tsahalis D T, Borchers I. Optimization of an active noise control system inside an aircraft,based on the simultaneous optimal positioning of microphones and speakers,with the use of a genetic algorithm. Computational Optimization and Applications200223(1):65-76.
14 Kochan K, Sachau D, Breitbach H. Robust active noise control in the loadmaster area of a military transport aircraft. The Journal of the Acoustical Society of America2011129(5):3011-3019.
15 Montazeri A, Poshtan J. GA?based optimization of a MIMO ANC system considering coupling of secondary sources in a telephone kiosk. Applied Acoustics200970(7):945-953.
16 张鹏举. 远程误差系统中物理和虚拟信号的相干性研究及应用. 硕士学位论文. 南京:南京大学,2022.
Zhang P J. Research and application of the coherence between physical and virtual signals in the remote error sensing systems. Master Dissertation. Nanjing:Nanjing University,2022.
17 Aretz M, Vorl?nder M. Combined wave and ray based room acoustic simulations of audio systems in car passenger compartments,Part Ⅱ:Comparison of simulations and measurements. Applied Acoustics2014,76:52-65.
18 Wang S P, Li H, Zhang P J,et al. An experimental study on the upper limit frequency of global active noise control in car cabins. Mechanical Systems and Signal Processing2023,201:110672.
19 Aretz M, Vorl?nder M. Combined wave and ray based room acoustic simulations of audio systems in car passenger compartments,Part I:Boundary and source data. Applied Acoustics2014,76:82-99.
20 邹海山,邱小军. 虚拟声屏障代价函数的比较. 声学技术200827(6):789-795.
Zou H S, Qiu X J. A comparison of cost functions for the virtual sound barrier system. Technical Acoustics200827(6):789-795.
21 邹海山,邱小军,牛锋,等. 虚拟声屏障的数值及实验分析. 声学学报200732(1):26-33.
Zou H S, Qiu X J, Niu F,et al. A numerical and experimental study on virtual sound barrier. Acta Acoustica200732(1):26-33.
22 Fusaro G, Kang J, Asdrubali F,et al. Assessment of acoustic metawindow unit through psychoacoustic analysis and human perception. Applied Acoustics2022,196:108885.
23 Long M. Architectural acoustics. Amsterdam:Elsevier,2005,91.
24 Holland J H. Adaptation in natural and artificial systems:An introductory analysis with applications to biology,control,and artificial intelligence. Cambridge,MA,USA:The MIT Press,1992,18-19.
25 Katoch S, Chauhan S S, Kumar V. A review on genetic algorithm:Past,present,and future. Multimedia Tools and Applications202180(5):8091-8126.
26 Yang Z Y, Wang Y F, Zhong X,et al. A database for active control of road noise in automobile cabins∥Proceedings of the 24th International Congress on Acoustics. Gyeongju,Korea,2022. .
[1] 陈阳, 陶建成. 独立式开口边框有源降噪系统设计[J]. 南京大学学报(自然科学版), 2022, 58(2): 196-204.
[2] 吴礼福, 胡秋岑, 陈晶晶. 自校正滤波有源噪声控制算法[J]. 南京大学学报(自然科学版), 2022, 58(2): 364-368.
[3] 陈柏村, 陶建成. 一种针对紧凑式管道有源降噪系统的误差传感策略[J]. 南京大学学报(自然科学版), 2021, 57(6): 1013-1022.
[4]  毛 鑫*,卢 晶,邹海山. 频域自适应算法在有源噪声控制系统中的性能研究[J]. 南京大学学报(自然科学版), 2014, 50(1): 41-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!