南京大学学报(自然科学版) ›› 2024, Vol. 60 ›› Issue (2): 276–286.doi: 10.13232/j.cnki.jnju.2024.02.009

• • 上一篇    

数值天气预报模式的行星边界层方案热力预报变量选择

赵怡雪, 周博闻()   

  1. 中尺度灾害性天气教育部重点实验室,南京大学大气科学学院,南京,210023
  • 收稿日期:2024-02-01 出版日期:2024-03-30 发布日期:2024-03-29
  • 通讯作者: 周博闻 E-mail:zhoubowen@nju.edu.cn
  • 基金资助:
    国家自然科学基金(42192555)

On the choice of prognostic thermal variable in planetary boundary layer schemes for numerical weather prediction models

Yixue Zhao, Bowen Zhou()   

  1. Key Laboratory for Mesoscale Severe Weather,Ministry of Education,and School of Atmospheric Sciences,Nanjing University,Nanjing,210023,China
  • Received:2024-02-01 Online:2024-03-30 Published:2024-03-29
  • Contact: Bowen Zhou E-mail:zhoubowen@nju.edu.cn

摘要:

在数值天气预报模式中,大气边界层湍流混合由行星边界层方案承担.传统的边界层方案多采用位温作为热力学预报变量,计算感热通量并获得位温的湍流倾向,多数边界层方案设计之初,也往往只考虑干边界层中的位温湍流混合.事实上,驱动边界层热对流的是浮力而非热力,前者还包含了水汽的作用,由虚位温表征.基于湍流可分辨的大涡模拟来评估传统边界层方案所参数化的感热通量在湿边界层中的适用性,重点关注方案中涉及逆梯度修正项的关键系数,同时也考察浮力通量的参数化评估结果显示浮力通量在干湿边界层中具备一致性,其模式系数不随水汽条件变化,因此,推荐以虚位温替代位温作为行星边界层方案热力预报变量.

关键词: 行星边界层方案, 对流边界层, 虚位温, 浮力通量, 感热通量

Abstract:

In numerical weather prediction models,atmospheric boundary layer turbulence is parameterized via planetary boundary layer (PBL) schemes. Traditional PBL schemes often adopt potential temperature θ as the prognostic thermal variable,compute sensible heat flux and the corresponding θ?tendency. As such,most PBL schemes are designed by considering turbulent mixing of θ in a dry boundary layer. In fact,boundary layer convection is driven by buoyancy rather than sensible heat. The former accounts for moisture effects,and is represented by the virtual potential temperature θv. Based on turbulence?resolving large?eddy simulations,this study evaluates the applicability of sensible heat flux?based turbulence parameterizations in the moist boundary layer,focusing on counter?gradient correction related model coefficients. The performance of buoyancy flux?based parameterization is also investigated. It is found that buoyancy fluxes are consistent for the dry and moist boundary layers,with identical model coefficients for both cases. This study therefore recommends the use of θv instead of θ as the prognostic thermal variable for PBL schemes.

Key words: planetary boundary layer scheme, convective boundary layer, virtual potential temperature, buoyancy flux, sensible heat flux

中图分类号: 

  • P445

图1

左图为对流边界层典型热力结构示意图,实线代表边界层热泡,右图为虚位温Θv和垂直湍流浮力通量w'θv'ˉ的垂直廓线示意图(zi和BS 分别代表边界层高度和地表浮力通量,改自赵昭和周博闻[11])"

图2

海洋浅积云边界层中的垂直浮力通量及其组成分量的垂直廓线(数据源自对Barbados Oceanographic and Meteorological Experiment (BOMEX)个例的大涡模拟[13])"

图3

六个具有不同波文比的理想对流边界层中的(a)感热通量w'θ'ˉ和(b)浮力通量w'θv'ˉ垂直廓线"

表1

BOMEX个例和干对流边界层个例的关键实验参数设置"

个例w'θs'¯Kms-1w'rvs'¯ms-1w'θvs'¯Kms-1u*ms-1Ugms-1zim-LOmzi/ LO-
BOMEX8.0×10-35.2×10-51.8×10-20.28-10+1.8×10-3z545935.9
CBL5.0×10-205.0×10-20.501010071835.5

图4

BOMEX个例的(a)垂直感热通量和(b)垂直浮力通量收支(图注参照式(9)与式(17))"

图5

如图4,CBL个例的垂直感热通量收支"

图6

(a) BOMEX个例和(b) CBL个例中的无量纲b系数(参见式(10))蓝线和绿线针对感热通量w'θ'ˉ分别采用了w*d和w*m定义,红线代表的是浮力通量w'θv'ˉ,采用w*m定义."

图7

(a) BOMEX个例中的感热通量(黑线)和浮力通量(红线)收支中的气压项和(b) CBL个例中的感热即浮力通量收支中的气压项"

图8

BOMEX个例中的标准化逆梯度修正项(式(16))及不同的b系数"

1 Stull R B. An introduction to boundary layer meteorology. Boston:Kluwer Academic Publishers,1988.
2 Hunt J C R, Kaimal J C, Gaynor J E. Eddy structure in the convective boundary layer?new measurements and new concepts. Quarterly Journal of the Royal Meteorological Society,1988114(482):827-858.
3 Salesky S T, Chamecki M, Bou?Zeid E. On the nature of the transition between roll and cellular organization in the convective boundary layer. Boundary?Layer Meteorology2017163(1):41-68.
4 Young G S. Turbulence structure of the convective boundary layer. Part Ⅱ. Phonenix 78 aircraft observations of thermals and their environment. Journal of the Atmospheric Sciences198845(4):727-735.
5 Warner J, Telford J W. Convection below cloud base. Journal of the Atmospheric Sciences196724(4):374-382.
6 Lenschow D H, Stephens P L. The role of thermals in the convective boundary layer. Boundary?Layer Meteorology198019(4):509-532.
7 Townsend A A. The structure of turbulent shear flow. New York:Cambridge University Press,1976,429.
8 Deardorff J W. Theoretical expression for the countergradient vertical heat flux. Journal of Geophysical Research197277(30):5900-5904.
9 Hu X M, Xue M, Li X L. The use of high?resolution sounding data to evaluate and optimize nonlocal PBL schemes for simulating the slightly stable upper convective boundary layer. Monthly Weather Review2019147(10):3825-3841.
10 Zhou B W, Sun S W, Yao K,et al. Reexamining the gradient and countergradient representation of the local and nonlocal heat fluxes in the convective boundary layer. Journal of the Atmospheric Sciences201875(7):2317-2336.
11 赵昭,周博闻. 日间对流边界层中的非局地动量混合. 气象科学202141(5):631-643.
Zhao Z, Zhou B W. Non?local mixing of momentum in the daytime convective boundary layer. Journal of the Meteorological Sciences202141(5):631-643.
12 Davies?Jones R. An expression for effective buoyancy in surroundings with horizontal density gradients. Journal of the Atmospheric Sciences200360(23):2922-2925.
13 Wang Y H, Cheng X P, Fei J F,et al. Modeling the shallow cumulus?topped boundary layer at gray zone resolutions. Journal of the Atmospheric Sciences202279(9):2435-2451.
14 Wyngaard J C. Turbulence in the atmosphere. New York:Cambridge University Press,2010,393.
15 LeMone M A, Pennell W T. The relationship of trade wind cumulus distribution to subcloud layer fluxes and structure. Monthly Weather Review1976104(5):524-539.
16 LeMone M A, Angevine W M, Bretherton C S,et al. 100 years of progress in boundary layer meteorology. Meteorological Monographs201959(1):9.1-9.85.
17 Conzemius R J, Fedorovich E. Dynamics of sheared convective boundary layer entrainment. Part I:Methodological background and large?eddy simu?lations. Journal of the Atmospheric Sciences,200663(4):1151-1178.
18 Liu P, Sun J N, Shen L D. Parameterization of sheared entrainment in a well?developed CBL. Part I:Evaluation of the scheme through large?eddy simu?lations. Advances in Atmospheric Sciences,201633(10):1171-1184.
19 De Roode S R, Duynkerke P G, Jonker H J J. Large?eddy simulation:how large is large enough? Journal of the Atmospheric Sciences200461(4):403-421.
20 Willis G E, Deardorff J W. A laboratory model of diffusion into the convective planetary boundary layer. Quarterly Journal of the Royal Meteorological Society,1976102(432):427-445.
21 Deardorff J W. Three?dimensional numerical study of the height and mean structure of a heated planetary boundary layer. Boundary?Layer Meteorology19747(1):81-106.
22 Ertel H. Der vertikale turbulenz?w?rmestrom in der atmosph?re. Meteorologische Zeitschrift1942,59:250-253.
23 Priestley C H B, Swinbank W C. Vertical transport of heat by turbulence in the atmosphere. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences1947189(1019):543-561.
24 Deardorff J W. The counter?gradient heat flux in the lower atmosphere and in the laboratory. Journal of the Atmospheric Sciences196623(5):503-506.
25 Therry G, Lacarrère P. Improving the eddy kinetic energy model for planetary boundary layer description. Boundary?Layer Meteorology198325(1):63-88.
26 Troen I B, Mahrt L. A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Boundary?Layer Meteorology198637(1-2):129-148.
27 Holtslag A A M, Moeng C H. Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer. Journal of the Atmospheric Sciences199148(14):1690-1698.
28 Moeng C H, Wyngaard J C. An analysis of closures for pressure?scalar covariances in the convective boundary layer. Journal of the Atmospheric Sciences198643(21):2499-2513.
29 Rotta J. Statistische theorie nichthomogener turbulenz. Zeitschrift für Physik1951129(6):547-572.
30 Holland J Z, Rasmusson E M. Measurements of the atmospheric mass,energy,and momentum budgets over a 500?kilometer square of tropical ocean. Monthly Weather Review1973101(1):44-55.
31 Pier Siebesma A, Bretherton C S, Brown A,et al. A large eddy simulation intercomparison study of shallow cumulus convection. Journal of the Atmospheric Sciences200360(10):1201-1219.
32 Shin H H, Hong S Y. Analysis of resolved and parameterized vertical transports in convective boundary layers at gray?zone resolutions. Journal of the Atmospheric Sciences201370(10):3248-3261.
33 Heinze R, Mironov D, Raasch S. Second?moment budgets in cloud topped boundary layers:A large?eddy simulation study. Journal of Advances in Modeling Earth Systems20157(2):510-536.
[1]  殷雷1,2,孙鉴泞1**,刘罡
.  地表非均匀加热影响对流边界层湍流特征的大涡模拟研究*
[J]. 南京大学学报(自然科学版), 2011, 47(6): 643-656.
[2]  林 恒 1 , 孙鉴泞 1 ** , 卢 伟 2
.  有切变对流边界层夹卷厚度参数化的大涡模拟研究 *
[J]. 南京大学学报(自然科学版), 2010, 46(6): 616-624.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!