南京大学学报(自然科学版) ›› 2024, Vol. 60 ›› Issue (1): 130–140.doi: 10.13232/j.cnki.jnju.2024.01.013

• • 上一篇    

场地有机污染物吸附行为多参数线性自由能模型研究

刘昆1,2, 南晨曦1, 孔令冉1, 刘慧婷3, 付翯云1, 瞿晓磊1()   

  1. 1.污染控制与资源化研究国家重点实验室,南京大学环境学院,南京,210023
    2.江苏省环境工程技术有限公司,南京,210023
    3.辽宁省废水治理技术重点实验室,沈阳理工大学环境与化学工程学院,沈阳,110159
  • 收稿日期:2023-09-18 出版日期:2024-01-30 发布日期:2024-01-29
  • 通讯作者: 瞿晓磊 E-mail:xiaoleiqu@nju.edu.cn
  • 基金资助:
    国家重点研发计划(2019YFC1804201);污染控制与资源化研究国家重点实验室开放基金(PCRRF22034);国家自然科学基金青年基金(22206132)

Poly⁃parameter linear free energy relationship models for organic pollutant sorption prediction at contaminated sites

Kun Liu1,2, Chenxi Nan1, Lingran Kong1, Huiting Liu3, Heyun Fu1, Xiaolei Qu1()   

  1. 1.State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
    2.Jiangsu Environmental Engineering Technology Co. , Ltd. , Nanjing, 210023, China
    3.Key Laboratory for Technology of Wastewater Treatment in Liaoning Province, School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang, 110159, China
  • Received:2023-09-18 Online:2024-01-30 Published:2024-01-29
  • Contact: Xiaolei Qu E-mail:xiaoleiqu@nju.edu.cn

摘要:

准确评估污染物在污染场地土壤中的吸附分配过程是污染场地安全管理和再利用开发的重要环节.以我国典型电子垃圾拆解场地为研究对象,解析了场地土壤中有机质的吸附特征,建立了适用于场地有机污染物分配评估的有机碳标化分配系数(KOC)预测模型,揭示了有机污染物在场地土壤中有机质上的吸附机制.该场地土壤有机质对有机污染物具有较强的吸附能力.构建了预测场地土壤中有机质吸附有机污染物的KOC的多参数线性自由能模型(pp?LFER).pp?LFER模型相较于常用的单参数线性自由能模型(sp?LFER)展现出更好的场地吸附数据的预测能力(R2=0.919).同时,采用其他文献报道的pp?LFER模型对该场地污染物KOC进行预测,发现预测偏差较高(RMSE>1.12),这表明pp?LFER模型的预测效果受场地土壤中有机质的性质影响较大,其跨区域应用性仍待提升.进一步结合pp?LFER模型中的分子结构描述符和各项系数解析了土壤中有机质的吸附机制,发现疏水作用和极化作用是吸附过程的重要作用力,氢键作用显著影响极性化合物的吸附过程.本研究基于实际污染场地土壤构建了高精度吸附预测模型,为场地污染风险评估和修复利用提供了更准确的技术手段.

关键词: 场地污染, 土壤有机质, 有机污染物, 有机碳标化分配系数, 预测模型

Abstract:

Accurate assessment of the sorption process of pollutants is an important step for the safe management and development of contaminated sites. We used a representative e?waste dismantling site in China as a research object to analyse the sorption properties of soil organic matter,developed a prediction model for the partition coefficient (KOC) of organic carbon,and revealed the sorption mechanism of organic pollutants on the soil organic matter in the site. The results show that the site soil organic matter has a strong sorption capacity for organic pollutants. Poly parameter linear free energy relationships(pp?LFER) show a better fit to the site sorption data thansingle parameter linear free energy relationships (sp?LFER) (R2=0.919). However,the validation of the established pp?LFER for soil organic matter from different areas shows a significant deviation (RMSE>1.12). The performance of pp?LFERs is affected by the soil organic matter propreties. It may not be able to accurately predict the sorption behavior of soils in different sites. The sorption mechanism was further analysed through molecular structure descriptors and the physicochemical significance of the coefficients. It was found that hydrophobic effect and polarisation are important forces in the sorption process,with hydrogen bonding having a significant effect on strongly polar compounds. This study provides the high?precision sorption prediction model for the actual contaminated site. It provides the managers with reliable model options for risk assessment.

Key words: site contamination, soil organic matter, organic pollutants, organic carbon normalized partition coefficient, prediction model

中图分类号: 

  • X5

表1

有机化合物的检测方法"

有机化合物色谱方法流动相(vv检测波长(nm)
阿特拉津液相色谱水∶甲醇(40∶60)222
液相色谱水∶甲醇(10∶90)254
液相色谱水∶甲醇(10∶90)270
对硝基苯酚液相色谱水∶乙腈(40∶60)220
有机化合物色谱方法升温条件
1,3,5⁃三氯苯气相色谱进样口和检测器温度分别设为270 °C和280 °C,炉温起始温度设为100 °C,以10 °C·min-1的速度升温至200 °C,再以30 °C·min-1的速度升温至250 °C,保持3 min.
BDE⁃47气相色谱

进样口和检测器温度分别设为290 °C和310 °C,柱温初始温度设为80 °C,保持1 min,再以

20 °C·min-1的速度升温至280 °C,保持5 min,最后以2 °C·min-1的速度升温至300 °C,保持2 min.

表2

有机化合物的lgKOW和分子结构描述符"

lgKOWESABV
阿特拉津2.651.221.290.171.011.62
4.682.291.3400.281.45
5.132.811.7100.281.58
对硝基苯酚1.911.071.720.820.260.95
1,3,5⁃三氯苯4.190.980.73001.08
BDE⁃476.802.321.4500.342.08

图1

土壤有机质对非极性有机污染物(a,右上角图示BDE?47吸附等温线)和极性有机污染物(b)的吸附等温线"

表3

土壤有机碳含量及土壤有机质吸附有机污染物的有机碳标化分配系数(KOC,单位:L·kg-1·C-1)"

土壤编号有机碳含量KOC(阿特拉津)KOC(蒽)KOC(芘)KOC(对硝基苯酚)KOC (1,3,5⁃三氯苯)KOC (BDE⁃47)
训练集
1号土壤2.45%53831216191764982966975509578096
2号土壤1.68%57151396371606134211071285566239
6号土壤0.75%1276445289845924010649970469550808
测试集
3号土壤1.96%601221428921231638561106171541700
4号土壤1.50%90991807171860435142910139616595
5号土壤1.30%86503006083194005915616943860994
7号土壤0.78%3097459703566183310327624434859014

图2

验证集中四种土壤有机质对六种有机化合物吸附实验值与pp?LFER(a,式(5)))和sp?LFER(b,式(6))预测值比较,虚线表示1∶1的线"

图3

土壤有机质吸附有机化合物的lgKOC实测值与sp?LFER(a)和pp?LFER(b~d)模型的lgKOC预测值比较"

表4

不同pp?LFER分子结构描述符系数汇总"

esabv参考文献
土壤/底泥有机质0.740-0.31-2.272.09Poople et al[39]
土壤/底泥有机质1.10-0.720.15-1.982.28Nguyen et al[7]
土壤/底泥有机质1.08-0.830.28-1.852.55Nguyen et al[7]
土壤/底泥有机质0.89-0.580-1.991.29Kipka et al[15]
土壤/底泥有机质1.20-0.08-0.19-1.811.16Kipka et al[15]
泥炭0.311.27-0.10-3.943.71Endo et al[20]
泥炭0.430.190.02-3.833.51Endo et al[20]
泥炭0.81-0.61-0.21-3.442.99Bronner et al[10]
土壤有机质1.10-1.722.34-1.271.09本研究

图4

不同种类污染物的各项作用力贡献率比较"

1 Zhao C, Dong Y, Feng Y P,et al. Thermal desorption for remediation of contaminated soil:A review. Chemosphere,2019,221:841-855.
2 Cornelissen G, Gustafsson O, Bucheli T D,et al. Extensive sorption of organic compounds to black carbon,coal,and kerogen in sediments and soils:Mechanisms and consequences for distribution,bioaccumulation,and biodegradation. Environmental Science & Technology,2005,39(18):6881-6895.
3 陈晶中,陈杰,谢学俭,等. 土壤污染及其环境效应. 土壤,2003,35(4):298-303.
Chen J Z, Chen J, Xie X J,et al. Soil pollution and its environmental impact. Soil,2003,35(4):298-303.
4 Chiou C T, Peters L J, Freed V H. A physical concept of soil?water equilibria for nonionic organic compounds. Science,1979,206(4420):831-832.
5 Schwarzenbach R P, Gschwend P M, Imboden D M. Environmental organic chemistry. 3rd ed. New Jersey:Wiley,2017:1024.
6 Goss K U, Schwarzenbach R P. Linear free energy relationships used to evaluate equilibrium partitioning of organic compounds. Environmental Science & Technology,2001,35(1):1-9.
7 Nguyen T H, Goss K U, Ball W P. Polyparameter linear free energy relationships for estimating the equilibrium partition of organic compounds between water and the natural organic matter in soils and sediments. Environmental Science & Technology,2005,39(4):913-924.
8 Zhu D Q, Pignatello J J. A concentration?dependent multi?term linear free energy relationship for sorption of organic compounds to soils based on the hexadecane dilute?solution reference state. Environmental Science & Technology,2005,39(22):8817-8828.
9 Endo S, Goss K U. Applications of polyparameter linear free energy relationships in environmental chemistry. Environmental Science & Technology,2014,48(21):12477-12491.
10 Bronner G, Goss K U. Predicting sorption of pesticides and other multifunctional organic chemicals to soil organic carbon. Environmental Science & Technology,2011,45(4):1313-1319.
11 Chiou C T, Porter P E, Schmedding D W. Partition equilibriums of nonionic organic compounds between soil organic matter and water. Environmental Science & Technology,1983,17(4):227-231.
12 Xing B S, Pignatello J J. Dual?mode sorption of low?polarity compounds in glassy poly(vinyl chloride) and soil organic matter. Environmental Science & Technology,1997,31(3):792-799.
13 Abraham M H. Hydrogen bonding. 31. Construction of a scale of solute effective or summation hydrogen?bond basicity. Journal of Physical Organic Chemistry,1993,6(12):660-684.
14 Abraham M H, Poole C F, Poole S K. Classification of stationary phases and other materials by gas chromatography. Journal of Chromatography A,1999,842(1-2):79-114.
15 Kipka U, Di Toro D M. A linear solvation energy relationship model of organic chemical partitioning to dissolved organic carbon. Environmental Toxicology and Chemistry,2011,30(9):2023-2029.
16 Vitale C M, Di Guardo A. Predicting dissolved organic carbon partition and distribution coefficients of neutral and ionizable organic chemicals. Science of the Total Environment,2019,658:1056-1063.
17 刘昆,付翯云,瞿晓磊. 天然有机质疏水性定量方法及吸附预测模型. 环境化学,2023,42(1):71-79.
Liu K, Fu H Y, Qu X L. The hydrophobicity quantification methods and sorption models for natural organic matter. Environmental Chemistry,2023,42(1):71-79.
18 矫旭东,陆泗进,王业耀,等. 电子垃圾拆解场地污染特征及土壤监测评估的研究概况. 土壤通报,2014,45(5):1265-1272.
Jiao X D, Lu S J, Wang Y Y,et al. Pollution characteristics of an e?waste recycling area and its soil monitoring and assessment. Chinese Journal of Soil Science,2014,45(5):1265-1272.
19 邓绍坡,骆永明,宋静,等. 电子废弃物拆解地PM10中多氯联苯、镉和铜含量调查及人体健康风险评估. 环境科学研究,2010,23(6):733-740.
Deng S P, Luo Y M, Song J,et al. Concentrations of polychlorinated biphenyls,cadmium and copper in inhalable particulate (PM10) from an e?waste recycling area and human health risk assessment. Research of Environmental Sciences,2010,23(6):733-740.
20 Endo S, Grathwohl P, Haderlein S B,et al. LFERs for soil organic carbon?water distribution coefficients (KOC) at environmentally relevant sorbate concen?trations. Environmental Science & Technology,2009,43(9):3094-3100.
21 Ulrich N, Endo S, Brown T N,et al. UFZ?LSER database v 3.2.1. Leipzig,Germany:Helmholtz Centre for Environmental Research?UFZ,2017.
22 Xia G S, Ball W P. Adsorption?partitioning uptake of nine low?polarity organic chemicals on a natural sorbent. Environmental Science & Technology,1999,33(2):262-269.
23 Liu K, Fu H Y, Zhu D Q,et al. Prediction of apolar compound sorption to aquatic natural organic matter accounting for natural organic matter hydrophobicity using aqueous two?phase systems. Environmental Science & Technology,2019,53(14):8127-8135.
24 石昕. 土壤不同组分对极性和非极性苯系化合物的吸附行为研究. 博士学位论文. 南京:南京大学,2010.
Shi X. Investigating roles of different soil components in sorption of polar and nonpolar aromatic compounds. Ph.D. Dissertation. Nanjing:Nanjing University,2010.
25 舒月红,黄小仁,贾晓珊. 1,2,4?三氯苯/四氯乙烯和 1,2,4,5?四氯苯在土壤/沉积物上的竞争吸附. 土壤学报,2009,46(4):714-720.
Shu Y H, Huang X R, Jia X S. Competitive sorption between 1,2,4?Trichlorobenzene/Tetra?chloroethene and 1,2,4,5–Tetrachlorobenzene on soils/sediments. Acta Pedologica Sinica,2009,46(4):714-720.
26 何耀武,区自清,孙铁珩. 多环芳烃类化合物在土壤上的吸附. 应用生态学报,1995,6(4):423-427.
He Y W, Ou Z Q, Sun T H. Adsorption of poly?cyclic aromatic hydrocarbons on soils. Chinese Journal of Applied Ecology,1995,6(4):423-427.
27 Wang X L, Sato T, Xing B S. Sorption and displacement of pyrene in soils and sediments. Environmental Science & Technology,2005,39(22):8712-8718.
28 Ghosh U, Zimmerman J R, Luthy R G. PCB and PAH speciation among particle types in contaminated harbor sediments and effects on PAH bioavailability. Environmental Science & Technology,2003,37(10):2209-2217.
29 Song J Z, Peng P A, Huang W L. Black carbon and kerogen in soils and sediments. 1. Quanti?cation and characterization. Environmental Science & Technology,2002,36(18):3960-3967.
30 霍丽娟,任理,毛萌,等. 阿特拉津及其代谢物在砂质壤土中的吸附. 中国环境科学,2018,38(1):254-262.
Huo L J, Ren L, Mao M,et al. Sorption of atrazine and its metabolites on a sandy loam soil. China Environmental Science,2018,38(1):254-262.
31 屈梦雄. 阿特拉津在东北冻融土壤中的吸附降解行为研究. 硕士学位论文. 大连:大连理工大学,2014.
Qu M X. Adsorption and degradation behavior of atrazine in freezing and thawing soils of northeast China. Master Dissertation. Dalian:Dalian Univer?sity of Technology,2014.
32 李金梅. 阿特拉津在狼尾草根际与非根际土壤的吸附特性及机制. 硕士学位论文. 哈尔滨:东北农业大学,2018.
Li J M. Adsorption characteristics and mechanism of atrazine in rhizosphere and non?rhizosphere soil of pennisetum. Master Dissertation. Harbin:Northeast Agricultural University,2018.
33 沈学优,卢瑛莹,朱利中. 对?硝基苯酚在水/有机膨润土界面的吸附行为——热力学特征及机理. 中国环境科学,2003,23(4):367-370.
Shen X Y, Lu Y Y, Zhu L Z. Sorption behavior of p?nitrophenol on the boundary of water and organobentonite:The thermodynamic character and mechanism. China Environmental Science,2003,23(4):367-370.
34 Wang X L, Guo X Y, Yang Y,et al. Sorption mechanisms of phenanthrene,lindane,and atrazine with various humic acid fractions from a single soil sample. Environmental Science & Technology,2011,45(6):2124-2130.
35 Liu H J, Wei K Y, Yu Y S,et al. Predicting adsorption coefficients of VOCs using polyparameter linear free energy relationship based on the evaluation of dispersive and specific interactions. Environmental Pollution,2019,255(Pt 1):113224.
36 Golbraikh A, Shen M, Xiao Z Y,et al. Rational selection of training and test sets for the development of validated QSAR models. Journal of Computer?Aided Molecular Design,2003,17(2):241-253.
37 Ripszam M, Paczkowska J, Figueira J,et al. Dissolved organic carbon quality and sorption of organic pollutants in the Baltic Sea in light of future climate change. Environmental Science & Technology,2015,49(3):1445-1452.
38 Niederer C, Goss K U, Schwarzenbach R P. Sorption equilibrium of a wide spectrum of organic vapors in leonardite humic acid:Modeling of experimental data. Environmental Science & Technology200640(17):5374-5379.
39 Poole S K, Poole C F. Chromatographic models for the sorption of neutral organic compounds by soil from water and air. Journal of Chromatography A,1999,845(1-2):381-400.
40 Vitha M, Carr P W. The chemical interpretation and practice of linear solvation energy relationships in chromatography. Journal of Chromatography A,2006,1126(1-2):143-194.
41 Kile D E, Chiou C T, Zhou H D,et al. Partition of nonpolar organic pollutants from water to soil and sediment organic matters. Environmental Science & Technology,1995,29(5):1401-1406.
42 Spurlock F C, Biggar J W. Thermodynamics of organic chemical partition in soils. 2. Nonlinear partition of substituted phenylureas from aqueous solution. Environmental Science & Technology,1994,28(6):996-1002.
43 张良静,顾慧燕,毕二平. 含特殊官能团有机物分配系数预测的多参数线性自由能关系(PP?LFERs)研究. 环境化学,2018,37(5):1045-1053.
Zhang L J, Gu H Y, Bi E P. Polyparameter linear free energy relationships (PP?LFERs) for predicting partition coefficients of organic compounds with specific functional groups. Environmental Chemistry,2018,37(5):1045-1053.
[1] 黄姝晗, 范振辉, 谷成, 金鑫. 非水饱和相矿物表面催化转化有机污染物的研究进展[J]. 南京大学学报(自然科学版), 2023, 59(3): 503-517.
[2] 虞益军, 曾国辉, 黄勃, 刘瑾, 张亦栩, 尹玲, 周科亮. 改进的Prophet融合误差预测模型应用于大气二氧化硫时序预测[J]. 南京大学学报(自然科学版), 2022, 58(3): 440-447.
[3] 崔鹤, 刘昆, 瞿晓磊. 基于紫外⁃可见光谱和机器学习方法的溶解性有机质吸附预测模型研究[J]. 南京大学学报(自然科学版), 2021, 57(3): 356-363.
[4] 王鹏,林志斌. 基于响度级、耳间互相关系数和中心频率的主观声场宽度预测模型[J]. 南京大学学报(自然科学版), 2019, 55(5): 804-812.
[5]  王卓君,申德荣*,聂铁铮,寇 月,于 戈.  UCM-PPM:基于用户分级的多参量Web预测模型[J]. 南京大学学报(自然科学版), 2018, 54(1): 85-.
[6]  万晨洁,余益军,张 莉,张晓辉,刘红玲*,于红霞. 太湖有机污染物的生态风险研究[J]. 南京大学学报(自然科学版), 2017, 53(2): 256-.
[7] 路俊玲,彭宇科,陈 旭,肖 琳*. 包埋法固定化对邻苯二甲酸酯降解菌功能的影响[J]. 南京大学学报(自然科学版), 2017, 53(2): 309-.
[8] 熊键,谷成. 天然酶和仿生材料对O—O 键活化的机理及环境学应用研究进展[J]. 南京大学学报(自然科学版), 2014, 50(4): 371-.
[9] 郭婧,于红霞,王玉婷,史薇,邓东阳. 以毒性效应为先导的有毒物质鉴别研究[J]. 南京大学学报(自然科学版), 2014, 50(4): 414-.
[10]  刘紫赞,沈勇,王思理,沈坚
.  用客观测量数据预测微型扬声器感知音质的复回归模型[J]. 南京大学学报(自然科学版), 2012, 48(5): 648-653.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!