南京大学学报(自然科学版) ›› 2023, Vol. 59 ›› Issue (6): 1059–1068.doi: 10.13232/j.cnki.jnju.2023.06.015

• • 上一篇    

基于模态控制法的平板扬声器指向性控制算法研究

卫文港, 程嘉正, 冯雪磊, 沈勇()   

  1. 近代声学教育部重点实验室,南京大学物理学院,南京,210023
  • 收稿日期:2023-09-05 出版日期:2023-11-30 发布日期:2023-12-06
  • 通讯作者: 沈勇 E-mail:yshen@nju.edu.cn

Research on directivity control algorithm of flat⁃panel loudspeakers based on modal control method

Wengang Wei, Jiazheng Cheng, Xuelei Feng, Yong Shen()   

  1. Key Laboratory of Modern Acoustics,Ministry of Education,School of Physics,Nanjing University,Nanjing,210023,China
  • Received:2023-09-05 Online:2023-11-30 Published:2023-12-06
  • Contact: Yong Shen E-mail:yshen@nju.edu.cn

摘要:

平板扬声器使用激励器驱动薄板产生弯曲振动从而辐射声波,已在手机、电视机等设备中得到应用.模态控制法在平板扬声器的振动控制领域已有较为深入的研究,但尚未发现将其应用于平板扬声器指向性控制的研究先例.结合屏幕发声技术与空间声重放理论,创新性引入模态控制法实现平板扬声器指向性声场控制,首次推导出从动圈式激励器驱动电压到平板扬声器模态激励的频域传递函数公式.结合数值仿真,采用模态控制法对平板扬声器声辐射特性进行指向性控制.结果表明,使用模态控制法控制波束主瓣轴向和覆盖角的效果显著,指向性控制是实现定向发声的关键.

关键词: 平板扬声器, 指向性控制, 模态控制法, 算法

Abstract:

Flat?panel loudspeakers,which use an exciter to drive a thin plate to produce bending vibration and radiate sound waves,have been used in mobile phones,TV sets and other devices. The modal control method has been studied deeply in the field of vibration control of flat?panel loudspeakers,but no precedents have been found to apply it to the directional control of flat?panel loudspeakers. Here,the modal control method is innovatively introduced to realize the directional sound field control of the flat?panel loudspeaker,and the frequency transfer function formula of the driven voltage of the driven coil actuator to the modal excitation of the flat?panel loudspeaker is derived for the first time. Based on numerical simulation,this paper uses modal control method to control the acoustic radiation characteristics of the lat?panel loudspeaker. The results show that the modal control method can control the beam main lobe axis direction and coverage angle effectively. Directivity control is the key to realize directional sound production.

Key words: flat?panel loudspeaker, directivity control, modal control method, algorithm

中图分类号: 

  • O42

图1

激励器等效电路图"

图2

薄板仿真示意图"

图3

不同波束主瓣轴向等值线图,波束主瓣轴向:(a) 0°;(b) 30°;(c) 60°(a) 0°, (b) 30°, (c) 60°"

图4

不同覆盖角等值线图,覆盖角: (a) 20°;(b) 80°;(c) 140°"

图5

不同模态数量时计算结果,模态数量:(a) 6;(b) 24;(c) 200"

图6

不同模态数量的性能指标:(a)声对比度;(b)匹配误差;(c)阵列效率"

图7

不同激励器数量计算结果,激励器数量:(a) 2;(b) 4;(c) 6;(d) 8;(e) 10"

图8

不同激励器数量的性能指标:(a)声对比度;(b)匹配误差;(c)阵列效率"

图9

激励器位置误差:(a) 无误差;(b) 10-6 m;(c) 10-5 m;(d) 10-4 m;(e) 10-3 m;(f) 10-2 m"

图10

激励器位置不同误差的性能指标:(a)声对比度;(b)匹配误差;(c)阵列效率(b) matching error,(c) array efficiency"

1 Tashiro M, Bank G, Roberts M. A new flat panel loudspeaker for portable multimedia∥Proceedings of the 103rd Convention. New York:Audio Engineering Society,1997.
2 Lee S, Park K, Jang K,et al. 16‐3:Study on enhancement of the sound quality by improvement of panel vibration in OLED TV. SID Symposium Digest of Technical Papers201849(1):185-187.
3 Park H, Park S, Bae M J. A study on the characteristics of electroencephalography (EEG) by listening location of OLED Flat TV speaker∥Lee R. Computational science/intelligence & applied informatics. Springer Berlin Heidelberg,2019:83-92.
4 华为终端有限公司. 华为智慧屏V 75 Super..
5 Anderson D A, Heilemann M C, Bocko M F. Flat?panel loudspeaker simulation model with electromagnetic inertial exciters and enclosures. Journal of the AES201765(9):722-732.
6 Li Q S. An exact approach for free vibration analysis of rectangular plates with line?concentrated mass and elastic line?support. International Journal of Mechanical Sciences200345(4):669-685.
7 Chiba M, Sugimoto T. Vibration characteristics of a cantilever plate with attached spring–mass system. Journal of Sound and Vibration2003260(2):237-263.
8 Dowell E H, Tang D. The high?frequency response of a plate carrying a concentrated mass/spring system. Journal of Sound and Vibration1998213(5):843-863.
9 Alsaif K A, Foda M A. Control of steady?state vibrations of rectangular plates. International Journal of Structural Stability and Dynamics201111(3):535-562.
10 Ratle A, Berry A. Use of genetic algorithms for the vibroacoustic optimization of a plate carrying point?masses. The Journal of the Acoustical Society of America1998104(6):3385-3397.
11 Zhang S Z, Shen Y, Shen X X,et al. Model optimization of distributed?mode loudspeaker using attached masses. Journal of the AES200654(4):295-305.
12 Lu G C, Shen Y. Model optimization of orthotropic distributed?mode loudspeaker using attached masses. The Journal of the Acoustical Society of America2009126(5):2294-2300.
13 Lu G C, Shen Y, Liu Z Y. Optimization of orthotropic distributed?mode loudspeaker using attached masses and multi?exciters. The Journal of the Acoustical Society of America2012131(2):EL93-EL98.
14 Anderson D, Bocko M F. Modal crossover networks for flat?panel loudspeakers. Journal of the AES201664(4):229-240.
15 Heilemann M C, Anderson D, Bocko M F. Sound?source localization on flat?panel loudspeakers. Journal of the AES201765(3):168-177.
16 Heilemann M C, Anderson D A, Bocko M F. Near?field object?based audio rendering on flat?panel displays. Journal of the AES201967(7-8):531-539.
17 Anderson D A, Heilemann M C, Bocko M F. Measures of vibrational localization on point?driven flat?panel loudspeakers. Proceedings of Meetings on Acoustics201626(1):065003.
18 Bai M R, Huang T. Development of panel loudspeaker system:Design,evaluation and enhancement. The Journal of the Acoustical Society of America2001109(6):2751-2761.
19 Bai M R, Chung K. Optimal design of panel speaker array with omnidirectional characteristics. The Journal of the Acoustical Society of America2002112(5):1944-1952.
20 Boone M M, de Bruijn W P J. On the applicability of distributed mode loudspeaker panels for wave field synthesis?based sound reproduction∥Proceedings of the 108th Convention. Paris,France:Audio Engineering Society,2000.
21 Boone M M. Multi?actuator panels (MAPs) as loudspeaker arrays for wave field synthesis. Journal of the AES200452(7-8):712-723.
22 Kournoutos N, Cheer J. A system for controlling the directivity of sound radiated from a structure. The Journal of the Acoustical Society of America2020147(1):231-241.
23 Kournoutos N, Cheer J. Investigation of a directional warning sound system for electric vehicles based on structural vibration. The Journal of the Acoustical Society of America2020148(2):588-598.
24 Lee T, Nielsen J K, Christensen M G. Signal?adaptive and perceptually optimized sound zones with variable span trade?off filters. IEEE/ACM Transactions on Audio,Speech,and Language Processing2020(28):2412-2426.
25 Coleman P, Jackson P J B, Olik M,et al. Acoustic contrast,planarity and robustness of sound zone methods using a circular loudspeaker array. The Journal of the Acoustical Society of America2014135(4):1929-1940.
26 Elliott S J, Cheer J, Choi J W,et al. Robustness and regularization of personal audio systems. IEEE Transactions on Audio,Speech,and Language Processing201220(7):2123-2133.
27 倪振华. 振动力学. 西安:西安交通大学出版社,1990.
28 杜功焕,朱哲民,龚秀芬. 声学基础. 第三版. 南京:南京大学出版社,2012.
29 Jin G Y, Chen H, Du J T,et al. The influence of edge restraining stiffness on the transverse vibrations of rectangular plate structures. Journal of Marine Science and Application20109(4):393-402.
30 Wang Q S, Shi D Y, Liang Q,et al. An improved Fourier series solution for the dynamic analysis of laminated composite annular,circular,and sector plate with general boundary conditions. Journal of Composite Materials201650(30):4199-4233.
31 Zhang H, Shi D Y, Wang Q S. An improved Fourier series solution for free vibration analysis of the moderately thick laminated composite rectangular plate with non?uniform boundary conditions. International Journal of Mechanical Sciences2017(121):1-20.
[1] 李涛, 李佳霖, 阮宁, 徐久成. 基于自适应环境因子熵权决策的多目标特征选择[J]. 南京大学学报(自然科学版), 2023, 59(5): 790-802.
[2] 谢军飞, 张海清, 李代伟, 于曦, 邓钧予. 基于Lightgbm和XGBoost的优化深度森林算法[J]. 南京大学学报(自然科学版), 2023, 59(5): 833-840.
[3] 张寿军, 江海峰, 肖硕, 王树豪, 商景杰. 移动群智感知中基于改进文化基因算法的长时多任务分配[J]. 南京大学学报(自然科学版), 2023, 59(4): 561-569.
[4] 宋雨, 肖玉柱, 宋学力. 基于伪标签回归和流形正则化的无监督特征选择算法[J]. 南京大学学报(自然科学版), 2023, 59(2): 263-272.
[5] 沈恩翔, 王育昕, 袁杰. 有限角度CT中使用改进的SART算法消除截断投影伪影[J]. 南京大学学报(自然科学版), 2022, 58(6): 1005-1011.
[6] 吕佳, 刘强, 李帅军. 结合密度峰值和改进自然邻居的自训练算法[J]. 南京大学学报(自然科学版), 2022, 58(5): 805-815.
[7] 黄鹤, 李潇磊, 王珺, 王会峰, 茹锋. 基于随机跳跃蝠鲼算法优化的电影信息数据聚类[J]. 南京大学学报(自然科学版), 2022, 58(5): 856-867.
[8] 章成旭, 叶绍强, 周恺卿, 欧云. 基于粗糙集和改进二进制布谷鸟搜索算法的高维数据特征选择[J]. 南京大学学报(自然科学版), 2022, 58(4): 584-593.
[9] 黄鹤, 李文龙, 吴琨, 王会峰, 茹锋, 王珺. 基于ALCE⁃SSA优化的三维无人机低空突防[J]. 南京大学学报(自然科学版), 2022, 58(3): 448-459.
[10] 田峻奇, 韩邦合. 软集优势矩阵的高低对角线性质及其诱导的还原算法[J]. 南京大学学报(自然科学版), 2022, 58(1): 49-59.
[11] 姜明雪, 杨有龙. 基于密度峰值聚类和模糊支持度的boosting随机森林[J]. 南京大学学报(自然科学版), 2021, 57(4): 582-590.
[12] 许国强, 余长州, 王林, 周春蕾, 高阳. 一种增强贝叶斯网络结构学习的自动变量序调整算法[J]. 南京大学学报(自然科学版), 2021, 57(2): 255-261.
[13] 孙颖, 蔡天使, 张毅, 鞠恒荣, 丁卫平. 基于合理粒度的局部邻域决策粗糙计算方法[J]. 南京大学学报(自然科学版), 2021, 57(2): 262-271.
[14] 汪志峰, 赵宇海, 王国仁. 异构Flink集群中负载均衡算法研究与实现[J]. 南京大学学报(自然科学版), 2021, 57(1): 110-120.
[15] 郑文彬, 李进金, 张燕兰, 廖淑娇. 基于矩阵的多粒度粗糙集粒度约简方法[J]. 南京大学学报(自然科学版), 2021, 57(1): 141-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!