南京大学学报(自然科学版) ›› 2023, Vol. 59 ›› Issue (4): 713–721.doi: 10.13232/j.cnki.jnju.2023.04.017

• • 上一篇    下一篇

海陆风环流和城市热岛环流相互作用及其对空气污染的影响

王鑫宇1, 刘红年1(), 俞布2   

  1. 1.南京大学大气科学学院,南京,210023
    2.杭州市气象局,杭州,310008
  • 收稿日期:2023-04-12 出版日期:2023-07-31 发布日期:2023-08-18
  • 通讯作者: 刘红年 E-mail:liuhn@nju.edu.cn
  • 基金资助:
    国家自然科学基金(41975004)

The interaction between sea⁃land breeze circulation and urban heat island circulation as well as their effects on air pollution

Xinyu Wang1, Hongnian Liu1(), Bu Yu2   

  1. 1.School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
    2.Hangzhou Meteorological Administration, Hangzhou, 310008, China
  • Received:2023-04-12 Online:2023-07-31 Published:2023-08-18
  • Contact: Hongnian Liu E-mail:liuhn@nju.edu.cn

摘要:

沿海城市的PM2.5和臭氧除受排放源、天气条件影响以外,还往往同时受城市热岛环流和海陆风环流的双重影响.利用2015年杭州市气象和环境监测数据以及数值模式RBLM?Chem,分析研究了杭州市在陆风天气、海风天气和海陆风三种环流条件下污染物浓度特征及城市效应对其的影响.得到了以下主要结论:海风使杭州市污染物浓度增大,在观测数据中PM2.5浓度和臭氧浓度分别最大增高了10.9 μg·m-3和12.0 μg·m-3,在模拟结果中相比于陆风天气型,海陆风天气型的PM2.5浓度和臭氧浓度分别增大13.1 μg·m-3和18.9 μg·m-3;相比于海风天气型,海陆风天气型的PM2.5浓度和臭氧浓度分别减小24.1 μg·m-3和11.6 μg·m-3.城市效应导致杭州市边界层高度增加63.8 m,地面风速减小0.99 m·s-1,地面气温增高1.14 ℃,PM2.5浓度增大2.86 μg·m-3,臭氧浓度增大10.2 μg·m-3.海风削弱了杭州的城市效应,城市对边界层高度、地面风速、地面气温和臭氧浓度的影响分别减小11.2 m,0.49 m·s-1,0.26 ℃和7%.

Abstract:

Besides emission sources and weather conditions,PM2.5 and ozone in coastal urban areas can be influenced by the sea?land breeze circulation and the urban heat island circulation. By using the meteorological and environmental observation data of Hangzhou,2015,and the RBLM?Chem model,the features of the pollutants in Land?Breeze (LB),Sea?Breeze (SB) and Sea?Land Breeze (SLB) three different circulation conditions and urban surface and no?urban surface two surface conditions are studied. Main conclusions are as following:during sea breeze,the concentrations of PM2.5 and ozone are increased. In statistical results,the maximum increase are 12.0 μg·m-3 and 10.9 μg·m-3 respectively. In simulated results,compared with LB,in SLB the average concentrations are increased by 13.1 μg·m-3 and 18.9 μg·m-3respectively; compared with SB,in SLB the average concentrations are increased by 24.1 μg·m-3 and 11.6 μg·m-3 respectively. Urban effect increases the boundary layer height by 63.8 m,decreases surface wind speed by 0.99m·s-1,increases the surface air temperature by 1.14 ℃ and increases the concentrations of PM2.5 and ozone by 2.86 and 10.2 μg·m-3 respectively. Urban effect is weakened in Hangzhou during sea breeze,its impacts on boundary layer height,surface wind speed,surface temperature and ozone concentration are decreased by 11.2 m,0.49 m·s-1,0.26 ℃ and 7%,respectively.

Key words: sea breeze effect, urban effect, air pollution

中图分类号: 

  • P49

图1

杭州市地理位置(a)和本文使用的杭州市观测站位置(b)(b)中蓝色“+”号为气象观测站,红色“*”号为环境监测站"

表1

站点风向判别标准 (degree)"

站点编号海风判别标准陆风判别标准
K112545-108225-288
K163742-100222-280
K163341-96222-276

表2

天气型判别方案"

天气型判别标准
海陆风

00-09时三个自动站均有三个时次为陆风,

12-20时三个自动站均有三个时次为海风

海风

00-09时三个自动站均有三个时次为海风,

12-20时三个自动站均有三个时次为海风

陆风

00-09时三个自动站均有三个时次为陆风,

12-20时三个自动站均有三个时次为陆风

其他以上三种天气型均不满足

表3

模拟日期"

天气型模拟日期
海陆风2月26日、6月3日、6月26日、8月29日、10月2日
海风2月25日、6月1日、6月27日、8月31日、10月4日
陆风3月3日、6月11日、6月30日、8月25日、10月1日

图2

RBLM?Chem模式模拟区域深蓝色为城市,红色为水体,蓝色为常绿林,绿色为农田,黄色为灌木.黑色框线中深蓝色的城市区域为本文定义的杭州主要城市区域"

表4

敏感性实验设置方案"

组别下垫面方案人为热方案建筑物
无城市无城市下垫面无人为热无建筑物
有城市有城市下垫面有人为热有建筑物

表5

观测与模拟结果对比"

物理量观测平均模拟平均差值
气温(℃)21.019.51.5
气压(hPa)1001.11000.20.9
相对湿度82.1%83.8%-1.7%
风速(m·s-12.02.3-0.3
PM2.5 (μg·m-3)47.248.8-1.6
臭氧(μg·m-3)62.065.2-3.2

图3

海风对PM2.5 (a,c,e)和臭氧(b,d,f)浓度的影响(单位:μg?m-3)(a~b)为2015年观测资料中海陆风日污染物浓度与海陆风日前后各两天平均污染物浓度;(c~d)为模拟结果中海陆风日污染物平均浓度与陆风日平均浓度的差值;(e~f)为模拟结果中海陆风日污染物平均浓度与海风日平均浓度的差值"

图4

有城市和无城市的(a)边界层高度(单位:m)、(b)地面风速(单位:m·s-1)和(c)地面气温差(单位:℃)"

图5

不同天气型下城市效应对边界层高度(单位:m)、地面风速(单位:m·s-1)和地面气温(单位:℃)的影响(a~c)分别为边界层高度在海风、海陆风和陆风下有城市与无城市的差值;(d~f)分别为地面风速在海风、海陆风和陆风下有城市与无城市的差值;(g~i)分别为地面气温在海风、海陆风和陆风下有城市与无城市的差值"

图6

有城市和无城市的PM2.5(a)和臭氧(b)浓度差值(单位:μg?m-3)"

图7

不同天气型下城市效应对PM2.5和臭氧的相对变化(%)(a~c)分别为PM2.5在海风、海陆风和陆风下有城市与无城市的相对变化;(d~f)分别为臭氧在海风、海陆风和陆风下有城市与无城市的相对变化"

1 2020年中国生态环境状况公报(摘录).环境保护,2021,49(11):7-68.
2 Wang Y, Du H, Xu Y,et al. Temporal and spatial variation relationship and influence factors on surface urban heat island and ozone pollution in the Yangtze River Delta,China.The Science of the total environment,2018(631-632):921-933.
3 Tum A B C, van Delden A J.The role of sound waves in sea‐breeze initiation.Quarterly Journal of the Royal Meteorological Society,1999,125(558):1997-2018.
4 James R H, Gregory J H. An introduction to dynamic meteorology (The Fifth Edition).Elsevier/Academic Press,2013.
5 王坚,赵丽娟.厦门海陆风环流特征与环境空气质量影响研究.环境科学与管理,2017,42(6):30-33.
Wang J, Zhao L J. Characteristics of sea?land wind circulation and tts influence on ambient air quality in Xiamen. Environmental Science and Management, 2017,42(6):30-33.
6 林长城,吴滨,陈彬彬,等.海峡西岸海陆风特征及对大气污染物浓度影响.环境科学与技术,2015,38(S1):56-60,99.
Lin C C, Wu B, Chen B B,et al. Characteristics of sea?land breeze and its impact on the concentration of air pollutants in the west bank of Taiwan Strait. Environmental Science & Technology,2015,38(S1):56-60, 99.
7 Ding A J, Wang T, Zhao M,et al. Simulation of sea?land breezes and a discussion of their implications on the transport of air pollution during a multi?day ozone episode in the Pearl River Delta of China. Atmospheric Environment,2005,38(39):6737-6750.
8 Goldberg D L, Loughner C P, Tzortziou M,et al. Higher surface ozone concentrations over the Chesapeake Bay than over the adjacent land:Observations and models from the DISCOVER?AQ and CBODAQ campaigns. Atmospheric Environ?ment,2014(84):9-19.
9 Mazzuca G M, Pickering K E, New D A,et al.Impact of bay breeze and thunderstorm circulations on surface ozone at a site along the Chesapeake Bay 2011-2016.Atmospheric Environment,2019(198):351-365.
10 Lisa S D, Stuart A. M, Christoph J. S,et al.Ozone differences between near?coastal and offshore sites in New England:Role of meteorology.Journal of Geophysical Research,D. Atmospheres:JGR,2007(112):D16S91.
11 Jeffrey A G, Wang B, Li D. Ozone and nitrogen dioxide pollution in a coastal urban environment:The role of sea breezes,and implications of their representation for remote sensing of local air quality.Journal of geophysical research. Atmospheres:JGR,2021,126(18):1-19.
12 Finardi S, Agrillo G, Baraldi R,et al. Atmospheric dynamics and ozone cycle during sea breeze in a mediterranean complex urbanized coastal site.Journal of Applied Meteorology & Climatology,2018,57(5):1083-1099.
13 Han Z S, González?Cruz J E, Liu H N,et al. Observed sea breeze life cycle in and around NYC:Impacts on UHI and ozone patterns.Urban Climate,2022(42):101109.
14 Han Z S, Liu H N, Yu B,et al. The effects of coastal local circulations and their interactions on ozone pollution in the Hangzhou metropolitan area.Urban Climate,2023(48):101417.
15 Oke, Boundary Layer Climates T. R.. London,UK:Routledge,1978.
16 Oke T R, Mills G, Christen A,et al. Urban climates. London,UK:Cambridge University Press,2017.
17 Wang X M, Chen F, Wu Z Y,et al. Impacts of weather conditions modified by urban expansion on surface ozone:Comparison between the Pearl River Delta and Yangtze River Delta regions.Advances in Atmospheric Sciences,2009,26(5):962-972.
18 Zhang D L, Shou Y X, Dickerson R R,et al. Impact of upstream urbanization on the urban heat island effects along the Washington?Baltimore corridor.Journal of Applied meteorology and Climatology,2011,50(10):2012-2029.
19 羊腾跃,刘红年,王学远,等.城市下垫面影响空气污染的机制分析.气象科学,2021,41(6):780-790.
Yang T Y, Liu H N, Wang X Y,et al. Mechanism analysis of the impact of urban underlying surface on air pollution. Journal of the Meteorological Sciences,2021,41(6):780-790.
20 徐敏,蒋维楣,季崇萍,等.北京地区气象环境数值模拟试验.应用气象学报,2002(S1):61-68.
Xu M, Jiang W M, Ji C P,et al. Numerical modeling and verification of structures of the boundary layer over Beijing area. Journal of Applied Meteorological Science,2002(S1):61-68.
21 何晓凤,蒋维楣,陈燕,等.人为热源对城市边界层结构影响的数值模拟研究.地球物理学报,2007(1):72-74.
He X F, Jiang W M, Chen Y,et al. Numerical simulation of the impacts of anthropogenic heat on the structure of the urban boundary layer. Chinese Journal of Geophysics,2007(1):72-74.
22 何晓凤,蒋维楣,周荣卫.一种单层城市冠层模式的建立及数值试验研究.大气科学,2009,33(5):981-993.
He X F, Jiang W M, Zhou R W. Development of a single?layer urban canopy model and numerical experiments. Chinese Journal of Atmospheric Scinences,2009,33(5):981-993.
23 Yang J, Liu H, Sun J,et al. Further development of the regional boundary layer model to study the impacts of greenery on the urban thermal environment.Journal of Applied Meteorology & Climatology,2015,54(1):137-152.
24 Gery M W, Whitten G Z, Killus J P,et al. A photochemical kinetics mechanism for urban and regional scale computer modeling.Journal of Geophysical Research,1989(94):12925-12956.
25 Yang J B, Liu H N, Sun J N.Evaluation and application of an online coupled modeling system to assess the interaction between urban vegetation and air quality.Asia Pacific Management Review,2018,18(3):693-710.
26 刘馨尹. 中国沿海海陆风环流特征及对PM2.5污染的影响.硕士学位论文.南京:南京大学,2021.
Liu X Y. Characteristics of sea?land breeze circulation and its effect on PM2.5 pollution in China coastal area. Master Dissertation.Nanjing:Nanjing University,2021.
[1] 张昊, 张宁, 潘志华. 北京地区不同城市热岛指标和城市效应研究方法的对比分析[J]. 南京大学学报(自然科学版), 2023, 59(2): 189-200.
[2] 王霁吟, 高大伟, 陈海燕, 华飞龙, 王元. 暴雨衍生灾害触发敏感性快速排序评价方法研究[J]. 南京大学学报(自然科学版), 2022, 58(5): 789-795.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!