南京大学学报(自然科学版) ›› 2020, Vol. 56 ›› Issue (4): 533–540.doi: 10.13232/j.cnki.jnju.2020.04.011

• • 上一篇    下一篇

基于深度特征表示的Softmax聚类算法

陈俊芬(),赵佳成,韩洁,翟俊海   

  1. 河北省机器学习与计算智能重点实验室,河北大学数学与信息科学学院,保定,071002
  • 收稿日期:2020-06-24 出版日期:2020-07-30 发布日期:2020-08-06
  • 通讯作者: 陈俊芬 E-mail:chenjunfen2010@126.com
  • 基金资助:
    河北省科技重点研发项目(19210310D);河北大学高层次创新人才科研启动经费项目

Softmax clustering algorithm based on deep features representation

Junfen Chen(),Jiacheng Zhao,Jie Han,Junhai Zhai   

  1. Hebei Key Laboratory of Machine Learning and Computational Intelligence,College of Mathematics andInformation Science,Hebei University,Baoding,071002, China
  • Received:2020-06-24 Online:2020-07-30 Published:2020-08-06
  • Contact: Junfen Chen E-mail:chenjunfen2010@126.com

摘要:

图像和语音已成为日常生活和科研的常见数据类型,图像的聚类分析是数据挖掘和图像处理领域的重要任务之一.基于自编码器的深度聚类方法具有表征能力有限的缺点,并且特征的生成与聚类指派是分步进行的.为此,提出一种基于新颖卷积自编码器的深度Softmax聚类算法(Asymmetric Convolutional Auto?encoder Based Softmax Clustering, ASCAE?Softmax).首先设计一种非对称的卷积自编码器网络结构(ASCAE),通过优化卷积和添加全连接层,使整个网络呈非对称;接着使用Softmax聚类器把特征映射成聚类概率分布,构造辅助目标概率分布,将特征学习与聚类判别联合在一起.通过迭代最小化KL(Kullback?Leibler)散度损失达到清晰的聚类划分.实验结果表明,该方法能够学习出使同类更加紧凑、异类更加稀疏的特征表示,且聚类结果优于经典的深度聚类算法.

关键词: 无监督学习, 特征表示, 卷积自编码器, 图像聚类, Softmax分类器

Abstract:

Image and speech have been common data in daily life and academic research. Therefore,image clustering analysis becomes one of the vital tasks in data mining and image processing fields. The deep clustering methods based on auto?encoders have the limited representation ability. Moreover,feature extraction and clustering assignment are carried out separately. A new deep Softmax clustering algorithm (ASCAE?Softmax) based on a novel convolutional auto?encoder is proposed. Firstly,an asymmetric convolutional auto?encoder network structure (ASCAE) is designed. The whole network is asymmetric with an optimizing convolution operation and adding fully connected layers. Secondly,Softmax clustering is proposed that is composed of mapping features into clustering probability distribution,making auxiliary target probability distribution,and combining features learning with clustering assignment. Then,clustering divisions become clearer by iteratively minimizing KL(Kullback?Leibler) divergence. Experimental results showed that the proposed deep clustering algorithm can achieve the optimal features representation which makes the intra?clusters more compact and the inter?clusters more dispersive,and the clustering result is better than the state?of?the?art deep clustering algorithms.

Key words: unsupervised learning, features representation, convolutional auto?encoder, image clustering, Softmax classifier

中图分类号: 

  • TP391

图1

非对称的卷积自编码网络(ASCAE)框架图"

表1

ASCAE网络参数设置"

LayersKernelStrides
C125×3×33
C250×3×32
C350×3×32
C450×2×21
F50-
D150-
D2K-
D350-

图2

特征优化"

表2

在MNIST数据集上比较ASCAE,ASCAE?Softmax和六个聚类算法的聚类性能"

Algorithms

ACC

NMI

KMS[6]

0.535

0.531

AEC[6]

0.760

0.669

IEC[6]

0.609

0.542

DEC

0.889

0.856

DBC

0.766

0.759

DEPICT

0.924

0.850

ASCAE

0.925

0.854

ASCAE?Softmax

0.960

0.910

图3

MNIST在ASCAE训练后的F层特征"

图4

MNIST上ASCAE?Softmax的F层特征"

图5

COIL?20数据集中的部分图片"

表3

ASCAE,ASCAE?Softmax和六个聚类算法在COIL?20上的聚类性能"

Algorithms

ACC

NMI

KMS[6]

0.592

0.767

DEN[6]

0.725

0.870

DEC

0.731

0.813

DBC

0.724

0.822

DEPICT

0.749

0.825

ASCAE

0.740

0.823

ASCAE?Softmax

0.755

0.833

图6

COIL?20上ASCAE?Softmax聚类过程的可视化"

图7

四个人脸图像集上的部分图片示例"

表4

ASCAE和ASCAE?Softmax算法在四个人脸图像集上的聚类性能"

ASCAEASCAE?Softmax
ACCNMIACCNMI
CAS?PEAL?R10.8900.9580.9000.959
BioID?Face0.8520.9490.8950.950
IMM?Face0.5500.7600.5710.763
UMISTS0.4420.6470.4470.654

图8

四个人脸数据集上ASCAE和ASCAE?Softmax的F特征可视化"

1 Zhang L H,Qi G J,Wang L Q,et al. vs AET. AED:unsupervised representation learning by auto?encoding transformations rather than data∥2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach,CA,USA:IEEE,2019:2547-2555.
2 Kang G L,Jiang L,Yang Y,et al. Contrastive adaptation network for unsupervised domain adaptation∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach,CA,USA:IEEE,2019:4893-4902.
3 Wu Z R,Xiong Y J,Yu S X,et al. Unsupervised feature learning via non?parametric instance discrimination∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City,UT,USA:IEEE,2018:3733-3742.
4 Caron M,Bojanowski P,Joulin A,et al. Deep clustering for unsupervised learning of visual features∥The 15th European Conference on Computer Vision (ECCV). Springer Berlin Heidelberg,2018:132-149.
5 Dizaji K G,Herandi A,Deng C,et al. Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization∥2017 IEEE International Conference on Computer Vision (ICCV). Venice,Italy:IEEE,2017:5736-5745.
6 Li F F,Qiao H,Zhang B,et al. Discriminatively boosted image clustering with fully convolutional
auto?encoders. Pattern Recognition,2018,83:161-173.
7 Yang J W,Parikh D,Batra D. Joint unsupervised learning of deep representations and image clusters∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas,NV,USA:IEEE,2016:5147-5156.
8 Xie J Y,Girshick R,Farhadi A. Unsupervised deep embedding for clustering analysis. 2016,arXiv:1511.06335.
9 Radford A,Metz L,Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. arxiv:1511.06434,2015.
10 Wang W G,Song H M,Zhao S Y,et al. Learning unsupervised video object segmentation through visual attention∥IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach,CA,USA:IEEE,2019:3064-3074.
11 He K M,Fan H Q,Wu Y X,et al. Momentum contrast for unsupervised visual representation learning. arXiv:1911.05722,2020.
12 Vo V H,Bach F,Cho M,et al. Unsupervised image matching and object discovery as optimization∥IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach,CA,USA:IEEE,2019:8287-8296.
13 Fischer A,Igel C. An introduction to restricted Boltzmann machines∥Alvarez L,Mejail M,Gomez L,et al. Progress in pattern recognition,image analysis,computer vision,and applications (CIARP). Springer Berlin Heidelberg,2012:14-36.
14 Rumelhart D E,Hinton G E,Williams R J. Learning representations by back?propagating errors. Nature,1986,323(6088):533-536.
15 Lecun Y,Bottou L,Bengio Y,et al. Gradient?based learning applied to document recognition. Proceedings of the IEEE,1998,86(11):2278-2324.
16 Dosovitskiy A,Springenberg J T,Riedmiller M,et al. Discriminative unsupervised feature learning with convolutional neural networks∥Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal,Canada:MIT Press,2014:766-774.
17 Hinton G E,Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science,2006,313(5786):504-507.
18 Masci J,Meier U,Cire?an D,et al. Stacked convolutional auto?encoders for hierarchical feature extraction∥The 21th International Conference on Artificial Neural Networks. Springer Berlin Heidelberg,2011:52-59.
19 Goodfellow I,Pouget?Abadie J,Mirza M,et al. Generative adversarial nets∥Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal,Canada:MIT Press,2014:2672-2680.
20 Caron M,Bojanowski P,Mairal J,et al. Unsupervised pre?training of image features on non?curated data∥2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul,Korea (South):IEEE,2019:2959-2968.
21 Ji X,Vedaldi A,Henriques J F. Invariant information clustering for unsupervised image classification and segmentation∥2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul,Korea (South):IEEE,2019:9865-9874.
22 Van Der Maaten L,Hinton G. Visualizing data using t?SNE. Journal of Machine Learning Research,2008,9:2579-2605.
23 Springenberg J T,Dosovitskiy A,Brox T,et al. Striving for simplicity:the all convolutional net. 2015,arXiv:1412.6806.
[1] 吕国俊,曹建军,郑奇斌,常宸,翁年凤. 基于结构保持对抗网络的跨模态实体分辨[J]. 南京大学学报(自然科学版), 2020, 56(2): 197-205.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王 倩,聂秀山,耿蕾蕾,尹义龙. D2D通信中基于Q学习的联合资源分配与功率控制算法[J]. 南京大学学报(自然科学版), 2018, 54(6): 1183 -1192 .
[2] 章康宁, 卢 晶. 指向性小尺度线性扬声器阵列鲁棒性研究[J]. 南京大学学报(自然科学版), 2019, 55(2): 180 -190 .
[3] 彭 宏, 刘 晨, 卢为党, 张 昱, 刘 鑫, 徐志江. 协作中继传输网络中基于无线供电的能量交易方法[J]. 南京大学学报(自然科学版), 2019, 55(2): 202 -210 .
[4] 吕海敏,沈水龙,严学新,史玉金,许烨霜. 上海地面沉降对轨道交通安全运营风险评估[J]. 南京大学学报(自然科学版), 2019, 55(3): 392 -400 .
[5] 何轶凡, 邹海涛, 于化龙. 基于动态加权Bagging矩阵分解的推荐系统模型[J]. 南京大学学报(自然科学版), 2019, 55(4): 644 -650 .
[6] 齐小刚, 强敏, 刘立芳. RSboFMC:提高数据可用性和负载均衡性的碎片矩阵缓存策略[J]. 南京大学学报(自然科学版), 2019, 55(4): 667 -677 .
[7] 刘作国,陈笑蓉. 汉语句法分析中的论元关系模型研究[J]. 南京大学学报(自然科学版), 2019, 55(6): 1010 -1019 .
[8] 柴变芳,魏春丽,曹欣雨,王建岭. 面向网络结构发现的批量主动学习算法[J]. 南京大学学报(自然科学版), 2019, 55(6): 1020 -1029 .
[9] 黄华娟,韦修喜. 基于自适应调节极大熵的孪生支持向量回归机[J]. 南京大学学报(自然科学版), 2019, 55(6): 1030 -1039 .
[10] 张弘,申俊峰,董国臣,刘圣强,王冬丽,王伟清. 云南来利山锡矿锡石标型特征及其找矿意义[J]. 南京大学学报(自然科学版), 2019, 55(6): 888 -897 .