南京大学学报(自然科学版) ›› 2014, Vol. 50 ›› Issue (3): 309–.

• • 上一篇    下一篇

低维磁性耦合体系的新物性及电/光场调控进展

王学锋1,2*,徐永兵1,2*,张 荣1,2   

  • 出版日期:2014-06-01 发布日期:2014-06-01
  • 作者简介:1. 南京大学电子科学与工程学院,江苏省光电信息功能材料重点实验室,南京,210093;
    2. 南京大学自旋电子学国际联合中心,南京,210093
  • 基金资助:
    国家重大科学研究计划(2014CB921100),国家自然科学基金(11274003, 61176088, 61274102)

The of new properties and electric/optic field manipulation of low-dimensional magnetic coupling systems

Wang Xuefeng1,2, Xu Yongbing1,2, Zhang Rong1,2   

  • Online:2014-06-01 Published:2014-06-01
  • About author: (1. Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China; 2. Nanjing-York International Joint Center in Spintronics, Nanjing University, Nanjing, 210093, China)

摘要: 简要介绍了三种不同的低维磁性耦合材料体系(即磁体/半导体、石墨烯、拓扑绝缘体形成的异质结构体系)的研究进展,重点讨论了其新物性、电/光场调控以及存在的若干问题,并提出了一些可能的解决方法。

Abstract: This review paper simply described the progress of three low-dimensional magnetic coupling systems, i.e., ferromagnet/semiconductor, ferromagnet/graphene, and ferromagnet/topological insulator heterostructure systems. Their new properties based on spin-orbital coupling and their external quantum manipulation by electric/optic field were discussed, especially focusing on some existed problems. We proposed some constructive solutions in the review. This active and rapid-developing field is expected to produce new-generation spintronic devices and benefits for information technology and innovation

[1] McMichael R D, Twisselmann D J. Localized ferromagnetic resonance in inhomogeneous thin films. Physical Review Letters, 2003, 90: 227601.
[2] Koo H C, Kwon J H, Eom J, et al. Control of spin precession in a spin-injected field effect transistor. Science, 2009, 325: 1515~1518.
[3] Jiang X, Wang R, Shelby R M, et al. Highly spin-polarized room-temperature tunnel injector for semiconductor spintronics using MgO(100). Physical Review Letters, 2005, 94: 056601.
[4] Lou X, Adelmann C, Crooker S A, et al. Electrical detection of spin transport in lateral ferromagnet–semiconductor devices. Nature Physics, 2007, 3: 197~202.
[5] Dash S P, Sharma S, Patel R S, et al. Electrical creation of spin polarization in silicon at room temperature. Nature, 2009, 462: 491~494.
[6] Fert L, Jaffers H. Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Physical Review B, 2001, 64: 184420.
[7] Smith D L, Silver R N. Electrical spin injection into semiconductors. Physical Review B, 2001, 64: 045323.
[8] Albrecht J D, Smith D L. Electron spin injection at a Schottky contact. Physical Review B, 2002, 66: 113303.
[9] Ikeda S, Miura K, Yamamoto H, et al. A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Nature Materials, 2010, 9: 721~724.
[10] Wang W G, Li M, Hageman S, et al.Electric-field-assisted switching in magnetic tunnel junctions. Nature Materials, 2012, 11: 64~68.
[11] Gonzalez J C, Miquita D R, da Silva M I N, et al.Phase formation in iron silicide nanodots grown by reactive deposition epitaxy on Si(111). Physical Review B, 2010, 81: 113403.
[12] Zhang S, Dayeh S A, Li Y, et al. Electrical spin injection and detection in silicon nanowires through oxide tunnel barriers. Nano Letters, 2013, 13: 430~435.
[13] Wong P K J, Zhang W, Cui X G, et al. Ultrathin Fe3O4 epitaxial films on wide bandgap GaN(0001). Physical Review B, 2010, 81: 035419.
[14] Jason R. Silicon spintronics. Nature Materials, 2012, 11: 400~408.
[15] Alagha S, Hernandez S E, Blomers C, et al. Universal conductance fluctuations and localization effects in InN nanowires connected in parallel. Journal of Applied Physics, 2010, 108: 113704.
[16] Kallaher R L, Heremans J J, Goel N, et al. Spin and phase coherence lengths in n-InSb quasi-one-dimensional wires. Physical Review B, 2010, 81: 035335.
[17] Kunihashi Y, Kohda M, Nitta J. Enhancement of spin lifetime in gate-fitted InGaAs narrow wires. Physical Review Letters, 2009, 102: 226601.
[18] Lebreton J C, Sharma S, Saito H, et al. Thermal spin current from a ferromagnet to silicon by Seebeck spin tunneling. Nature, 2011, 475: 82~85.
[19] Claydon J S, Xu Y B, Tselepi M, et al. Direct observation of a bulklike spin moment at the Fe/GaAs(100)-4×6 Interface. Physical Review Letters, 2004, 93: 037206.
[20] Tian Y, Ye L, Jin X F. Proper scaling of the anomalous hall effect. Physical Review Letters, 2009, 103: 087206.
[21] Xu X Y, Yin L F, Dong G S, et al. Magnetic anisotropy of bcc Co on FeCu3(001). Physical Review B, 2009, 80: 092405.
[22] Wang S L, Chen L, Meng K K, et al. Origin of ferromagnetism in self-assembled Ga1−xMnxAs quantum dots grown on Si. Applied Physics Letters, 2010, 97: 242505.
[23] Chen L, Yang X, Yang F H, et al. Enhancing the curie temperature of ferromagnetic semiconductor (Ga,Mn) as to 200 K via nanostructure engineering. Nano Letters, 2011, 11: 2584~2589.
[24] Shiota Y, Nozaki T, Bonell F, et al. Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nature Materials, 2012, 11: 39~43.
[25] Duan C G, Jaswal S S, Tsymbal E Y. Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: Ferroelectric control of magnetism. Physical Review Letters, 2006, 97: 047201.
[26] Duan C G, Velev J P, Sabirianov R F, et al. Surface magnetoelectric effect in ferromagnetic metal films. Physical Review Letters, 2008, 101: 137201.
[27] Maruyama T, Shiota Y, Nozaki T, et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nature Nanotechnology, 2009, 4: 158~161.
[28] Weisheit M, Fahler S, Marty A, et al. Field-induced modification of magnetism in thin-film ferromagnets. Science, 2007, 315: 349~351.
[29] Koehl W F, Buckley B B, Heremans F J, et al. Room temperature coherent control of defect spin qubits in silicon carbide. Nature, 2011, 479: 84~87.
[30] Awschalom D D, Bassett L C, Dzurak A S, et al. Quantum spintronics: Engineering and manipulating atom-like spins in semiconductors. Science, 2013, 339: 1174~1179.
[31] Kirilyuk A, Kimel A V, Rasing T. Ultrafast optical manipulation of magnetic order. Reviews of Modern Physics, 2010, 82: 2731~2784.
[32] Kimel A V, Ivanov B A, Pisarev R V, et al. Inertia-driven spin switching in antiferromagnets. Nature Physics, 2009, 5: 727~731.
[33] Ostler T A, Barker J, Evans R F L, et al. Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet. Nature Communications, 2012, 3: 666.
[34] Oh S. The complete quantum hall trio. Science, 2013, 340: 153~154.
[35] Zhang Y, Talapatra S, Kar S, et al. First-principles study of defect-induced magnetism in Carbon. Physical Review Letters, 2007, 99: 107201.
[36] Sahin H, Ataca C, Ciraci S. Magnetization of graphane by dehydrogenation. Applied Physics Letters, 2009, 95: 222510.
[37] Sahin H, Topsakal M, Ciraci S. Structures of fluorinated graphene and their signatures. Physical Review B, 2011, 83: 115432.
[38] Nair R R, Sepioni M, Tsai I-L, et al. Spin-half paramagnetism in graphene induced by point defects. Nature Physics, 2012, 8: 199~202.
[39] Kane C L, Mele E J. Z2 topological order and the quantum spin hall effect. Physical Review Letters, 2005, 95: 146802.
[40] Elias D C, Gorbachev R V, Mayorov A S, et al. Dirac cones reshaped by interaction effects in suspended graphene. Nature Physics, 2011, 7: 701~704.
[41] Weeks A, Hu J, Alicea J, et al. Engineering a robust quantum spin hall state in graphene via adatom deposition. Physical Review X, 2011, 1: 021001.
[42] Hu J, Alicea J, Wu R Q, et al. Giant topological insulator gap in graphene with 5d adatoms. Physical Review Letters, 2012, 109: 266801.
[43] Sun Q F, Xie X C. CT-Invariant quantum spin hall effect in ferromagnetic graphene. Physical Review Letters, 2010, 104: 066805.
[44] Sun Q F, Jiang Z T, Yu Y, et al. Spin superconductor in ferromagnetic graphene. Physical Review B, 2011, 84: 214501.
[45] Qiao Z, Yang S A, Feng W, et al. Quantum anomalous Hall effect in graphene from Rashba and exchange effects. Physical Review B, 2010, 82: 161414.
[46] Tse W K, Qiao Z H, Yao Y G, et al. Quantum anomalous hall effect in single-layer and bilayer graphene. Physical Review B, 2011, 83: 155447.
[47] Qiao Z H, Jiang H, Li X, et al. Microscopic theory of quantum anomalous Hall effect in graphene. Physical Review B, 2012, 85: 115439.
[48] Ding J, Qiao Z H, Feng W X, et al. Engineering quantum anomalous/valley hall states in graphene via metal-atom adsorption: An ab-initio study. Physical Review B, 2011, 84: 195444.
[49] Zhang H B, Lazo C, Blügel S, et al. Electrically tunable quantum anomalous hall effect in graphene decorated by 5d transition-metal adatoms. Physical Review Letters, 2012, 108: 056802.
[50] Jiang H, Qiao Z H, Liu H W, et al. Stabilizing topological phases in graphene via random adsorption. Physical Review Letters, 2012, 109: 116803.
[51] Varykhalov A, Sanchez-Barriga, Shikin J A M, et al. Electronic and magnetic properties of quasifreestanding graphene on Ni. Physical Review Letters, 2008, 101: 157601.
[52] Dedkov Y S, Fonin M, Rudiger U, et al. Rashba effect in the graphene/Ni(111) system. Physical Review Letters, 2008, 100: 107602.
[53] Haugen H, Huertas-Hernando D, Brataas A. Spin transport in proximity-induced ferromagnetic graphene. Physical Review B, 2008, 77: 115406.
[54] Semenov Y G, Kim K W, Zavada J M. Spin field effect transistor with a graphene channel. Applied Physics Letters, 2007, 91: 153105.
[55] Kane C L, Mele E J. Quantum spin hall effect in graphene. Applied Physics Letters, 2005, 95: 226801.
[56] Bernevig B A, Hughes T L, Zhang S C. Quantum spin hall effect and topological phase transition in HgTe quantum wells. Science, 2006, 314: 1757~1761.
[57] Moore J E, Balents L. Topological invariants of time-reversal-invariant band structures. Physical Review B, 2007, 75: 121306.
[58] Konig M, Wiedmann S, Brune C, et al. Quantum spin hall insulator state in HgTe quantum wells. Science, 2007, 318: 766~770.
[59] Fu L, Kane C L, Mele E J. Topological insulators in three dimensions. Physical Review Letters, 2007, 98: 106803.
[60] Hsieh D, Qian D, Wray L, et al .A topological dirac insulator in a quantum spin hall phase. Nature, 2008, 452: 970~974.
[61] Zhang H, Liu C X, Qi X L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single dirac cone on the surface. Nature Physics, 2009, 5: 438~442.
[62] Chen Y L, Analytis J G, Chu J H, et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science, 2009, 325: 178.
[63] Hsieh D, Xia Y, Qian D, et al. Observation of time-reversal-protected single-dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3. Physical Review Letters, 2009, 103: 146401.
[64] Chen X, Ma X C, He K, et al. Molecular beam epitaxial growth of topological insulators. Advanced Materials, 2011, 23: 1162~1165.
[65] Jiang Y, Wang Y, Chen M, et al. Landau quantization and the thickness limit of topological insulator thin films of Sb2Te3. Physical Review Letters, 2012, 108: 016401.
[66] Wang M X, Liu C H, Xu J P, et al. The coexistence of superconductivity and topological order in the Bi2Se3 thin films. Science, 2012, 336: 52~55.
[67] Li Z, Qin Y, Song F, et al. Experimental evidence on the altshuler-aronov-spivak interference of the topological surface states in the exfoliated Bi2Te3 nanoflakes. Physical Review Letters, 2012, 100: 083107.
[68] Li Z, Chen T, Pan H, et al. Two-dimensional universal conductance fluctuations and the electron-phonon interaction of surface states in Bi2Te2Se microflakes. Scientific Reports, 2012, 2: 595.
[69] Chen Y L, Chu J H, Analytis J G, et al. Massive dirac fermion on the surface of a magnetically doped topological insulator. Science, 2010, 329: 659~662.
[70] Wray L A, Xu S Y, Xia Y Q, et al. A topological insulator surface under strong coulomb, magnetic and disorder perturbations. Nature Physics, 2011, 7: 32~37.
[71] Hor Y S, Roushan P, Beidenkopf H, et al. Development of ferromagnetism in the doped topological insulator Bi2−xMnxTe3. Physical Review B, 2010, 81: 195203.
[72] Garate I, Franz M. Inverse spin-galvanic effect in the interface between a topological insulator and a ferromagnet. Physical Review Letters, 2010, 104: 146802.
[73] Yu R, Zhang W, Zhang H, et al. Quantized anomalous hall effect in magnetic yopological insulators. Science, 2010, 329: 61~64.
[74] Zhu J J, Yao D X, Zhang S C, et al. Electrically controllable surface magnetism on the surface of topological insulators. Physical Review Letters, 2011, 106: 097201.
[75] Zhang J M, Zhu W G, Zhang Y, et al. Tailoring magnetic doping in the topological insulator Bi2Se3. Physical Review Letters, 2012, 109: 266405.
[76] Xiao D, Yao Y, Feng W, et al. Half-heusler compounds as a new class of three-dimensional topological insulators. Physical Review Letters, 2010, 105: 096404.
[77] Cha J J, Williams J R, Kong D, et al. Magnetic doping and kondo effect in Bi2Se3 nanoribbons. Nano Letters, 2010, 10: 1076~1081.
[78] Liu M, Zhang J, Chang C, et al. Crossover between weak antilocalization and weak localization in a magnetically doped topological insulator. Physical Review Letters, 2012, 108: 036805.
[79] Chang C Z, Zhang J, Liu M, et al. Thin films of magnetically doped topological insulator with carrier-independent long-range ferromagnetic order. Advanced Materials, 2013, 25: 1065~1070.
[80] Chang C Z, Zhang J, Feng X, et al. Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator. Science, 2013, 340: 167~170.
[81] Wu G F, Chen H, Sun Y, et al. Tuning the vertical location of helical surface states in topological insulator heterostructures via dual-proximity effects. Scientific Reports, 2013, 3: 1233.
[82] Vobornik I, Manju U, Fujii J, et al. Magnetic proximity effect as a pathway to spintronic applications of topological insulators. Nano Letters, 2011, 11: 4079~4082.
[83] Liu Q, Liu C X, Xu C, et al. Magnetic impurities on the surface of a topological insulator. Physical Review Letters, 2009, 102: 156603.
[84] Mondal S, Sen D, Sengupta K, et al. Tuning the conductance of dirac fermions on the surface of a topological insulator. Physical Review Letters, 2010, 104: 046403.
[85] McIve J W, Hsieh D, Steinberg H, et al. Control over topological insulator photocurrents with light polarization. Nature Nanotechnology, 2012, 7: 96~100.
[86] Pesin D, MacDonald A H. Spintronics and pseudospintronics in graphene and topological insulators. Nature Materials, 2012, 11: 409~416.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 邱 浩,王欣然*. 二硫化钼的电子输运与器件[J]. 南京大学学报(自然科学版), 2014, 50(3): 280 .
[2] 骆乾坤*,吴剑锋2,杨运3,钱家忠1. 渗透系数空间变异程度对进化算法优化结果影响评价[J]. 南京大学学报(自然科学版), 2015, 51(1): 60 -66 .
[3] 孙大军1,2, 王永恒1,2*, 勇俊1,2. 实频数据技术在水声换能器宽带匹配中的应用[J]. 南京大学学报(自然科学版), 2015, 51(6): 1182 -1188 .
[4] 杨政予1,王新龙1
. 茅山军号声现象的进一步研究[J]. 南京大学学报(自然科学版), 2015, 51(6): 1097 -1106 .
[5] 张亚平,2,万宇1,2,聂青3,阮晓红1,2*,王子健4. 湖泊水体中氮的生物地球化学过程及其生态学意义[J]. 南京大学学报(自然科学版), 2016, 52(1): 5 -15 .
[6] 李荣富1,2,罗跃辉 ,2,曾洪玉1,2,阮晓红1,2*,刘丛强3*. 稳定同位素技术在环境水体氮的生物地球化学循环研究中的应用[J]. 南京大学学报(自然科学版), 2016, 52(1): 16 -26 .
[7] 李 婷1,张超智1,2*,沈 丹1,袁 阳1. 石墨烯和氧化石墨烯的生物体毒性研究进展[J]. 南京大学学报(自然科学版), 2016, 52(2): 235 .
[8] 涂 臻*,卢 晶 . 散射条件下小尺度扬声器阵列声聚焦算法鲁棒性研究[J]. 南京大学学报(自然科学版), 2016, 52(2): 382 .
[9] 葛 勇1,孙宏祥1,2*,袁寿其1,夏建平1,管义钧1 . 含对称三角形腔的波导管中宽带低频隔声效应[J]. 南京大学学报(自然科学版), 2016, 52(4): 619 .
[10] 季 阳,单 丹,钱明庆,李 伟,徐 骏*,陈坤基. 镶嵌于非晶碳化硅中的高导电性掺杂纳米晶硅的制备与电学性能研究[J]. 南京大学学报(自然科学版), 2016, 52(5): 780 .