基于BiLSTM和CNN的序贯三支情感分类模型研究
|
赵梦宇, 孙京博, 魏遵天, 辛现伟, 宋继华
|
Research on sequential three⁃way sentiment classification model based on BiLSTM and CNN
|
Mengyu Zhao, Jingbo Sun, Zuntian Wei, Xianwei Xin, Jihua Song
|
|
表3 三个数据集在不同模型下分类召回率对比
|
Table 3 Cassification recall of three datasets with different models
|
|
模型 | Hotel | Computer | 中文微博情感 |
---|
BiLCNN⁃S3WD | 0.9165±0.0023 | 0.9280±0.0137 | 0.8190±0.0059 | BiLSTM | 0.9114±0.0037 | 0.9085±0.0101 | 0.7959±0.0102 | BiLSTM+CNN (kernel_size=2) | 0.9130±0.0033 | 0.9194±0.0015 | 0.7591±0.0226 | BiLSTM+CNN (kernel_size=3) | 0.9125±0.0034 | 0.9216±0.0055 | 0.7997±0.0134 | BiLSTM+CNN (kernel_size=4) | 0.9145±0.0027 | 0.9209±0.0040 | 0.7946±0.0175 | BiLSTM+CNN (kernel_size=5) | 0.9140±0.0030 | 0.9194±0.0073 | 0.8085±0.0118 | DLSTWSC | 0.9110±0.0020 | 0.9259±0.0000 | 0.7806±0.0250 | CFRT | 0.7377±0.0039 | 0.7581±0.0046 | 0.6564±0.0021 |
|
|
|