结合兴趣点类别周期属性和用户短期偏好特征的推荐模型
|
桑春艳, 易星宇, 廖世根, 文俊浩
|
A recommendation model combining point of interest category periodic attributes and user short⁃term preference features
|
Chunyan Sang, Xingyu Yi, Shigen Liao, Junhao Wen
|
|
表2 CPSTIN与几种基准模型在NYC和TKY数据集上的对比实验结果
|
Table 2 Experimental results of CPSTIN and benchmark models on the NYC and TKY datasets
|
|
| NYC | TKY |
---|
| | | | | | | |
---|
OURS | 0.6996 | 0.7491 | 0.5643 | 0.5710 | 0.6435 | 0.7065 | 0.5053 | 0.5138 | NSSR | 0.2446 | 0.2566 | 0.2162 | 0.2179 | 0.1936 | 0.2123 | 0.1677 | 0.1702 | FPMC | 0.3727 | 0.5392 | 0.2192 | 0.2377 | 0.1528 | 0.2155 | 0.0967 | 0.1049 | ATSTLSTM | 0.2923 | 0.3951 | 0.1859 | 0.1996 | 0.3165 | 0.4330 | 0.1894 | 0.2050 | PLSPL | 0.3221 | 0.3962 | 0.2117 | 0.2218 | 0.3438 | 0.4207 | 0.2271 | 0.2374 | STAN | 0.3634 | 0.5146 | 0.1988 | 0.2189 | 0.2500 | 0.3300 | 0.1645 | 0.1756 | CORE | 0.5226 | 0.5991 | 0.3738 | 0.3833 | 0.4208 | 0.4771 | 0.2975 | 0.3053 | LSTM | 0.5024 | 0.5986 | 0.3311 | 0.3437 | 0.4219 | 0.5108 | 0.2824 | 0.2944 | LightSANs | 0.5125 | 0.5771 | 0.3511 | 0.3600 | 0.4566 | 0.5556 | 0.3020 | 0.3155 | HST⁃LSTM | 0.5304 | 0.6230 | 0.3679 | 0.3807 | 0.4105 | 0.4873 | 0.2906 | 0.3009 | GeoSAN | 0.4297 | 0.5841 | 0.2592 | 0.2794 | 0.5629 | 0.6942 | 0.3626 | 0.3798 | DeepMove | 0.5782 | 0.6857 | 0.3847 | 0.3994 | 0.5032 | 0.6004 | 0.3358 | 0.3489 | LSTPM | 0.5993 | 0.7084 | 0.4184 | 0.4335 | 0.5031 | 0.5877 | 0.3564 | 0.3679 |
|
|
|