基于乳腺超声视频流和自监督对比学习的肿瘤良恶性分类系统
|
唐蕴芯, 廖梅, 张艳玲, 张建, 陈皓, 王炜
|
Breast tumor classification based on video stream and self⁃supervised contrastive learning
|
Yunxin Tang, Mei Liao, Yanling Zhang, Jian Zhang, Hao Chen, Wei Wang
|
|
表4 两种损失函数的DenseNet169?三胞胎网络、Multi?task LR模型、DenseNet169?ImageNet预训练模型和随机初始化模型在四个小数据集上三种评价指标的对比
|
Table 4 Three evaluation indicators of Triplet Network based on DenseNet169 with two loss functions,Multi?task LR model,ImageNet pre?trained model based on DenseNet169 and stochastic initialization model on four small datasets
|
|
小数据集 1 64个训练, 16个测试 | | AUC | Sensitivity | Specificity | 随机初始化 | 0.727 | 0.683 | 0.683 | ImageNet预训练模型 | 0.743 | 0.667 | 0.667 | DenseNet169⁃三胞胎网络(Hard Triplet Loss) | 0.800 | 0.724 | 0.724 | DenseNet169⁃三胞胎网络(InfoNCE Loss) | 0.800 | 0.734 | 0.734 | Multi⁃task LR模型 | 0.743 | 0.661 | 0.661 | 小数据集 2 96个训练, 24个测试 | 随机初始化 | 0.836 | 0.769 | 0.769 | ImageNet预训练模型 | 0.852 | 0.764 | 0.764 | DenseNet169⁃三胞胎网络(Hard Triplet Loss) | 0.901 | 0.835 | 0.835 | DenseNet169⁃三胞胎网络(InfoNCE Loss) | 0.867 | 0.809 | 0.809 | Multi⁃task LR模型 | 0.900 | 0.833 | 0.833 | 小数据集 3 140个训练, 35个测试 | 随机初始化 | 0.859 | 0.793 | 0.793 | ImageNet预训练模型 | 0.842 | 0.754 | 0.754 | DenseNet169⁃三胞胎网络(Hard Triplet Loss) | 0.929 | 0.865 | 0.865 | DenseNet169⁃三胞胎网络(InfoNCE Loss) | 0.889 | 0.818 | 0.818 | Multi⁃task LR模型 | 0.897 | 0.834 | 0.834 | 小数据集 4 152个训练, 38个测试 | 随机初始化 | 0.832 | 0.776 | 0.776 | ImageNet预训练模型 | 0.848 | 0.760 | 0.760 | DenseNet169⁃三胞胎网络(Hard Triplet Loss) | 0.936 | 0.870 | 0.870 | DenseNet169⁃三胞胎网络(InfoNCE Loss) | 0.901 | 0.837 | 0.837 | Multi⁃task LR模型 | 0.929 | 0.868 | 0.868 |
|
|
|