基于乳腺超声视频流和自监督对比学习的肿瘤良恶性分类系统
唐蕴芯, 廖梅, 张艳玲, 张建, 陈皓, 王炜

Breast tumor classification based on video stream and self⁃supervised contrastive learning
Yunxin Tang, Mei Liao, Yanling Zhang, Jian Zhang, Hao Chen, Wei Wang
表4 两种损失函数的DenseNet169?三胞胎网络、Multi?task LR模型、DenseNet169?ImageNet预训练模型和随机初始化模型在四个小数据集上三种评价指标的对比
Table 4 Three evaluation indicators of Triplet Network based on DenseNet169 with two loss functions,Multi?task LR model,ImageNet pre?trained model based on DenseNet169 and stochastic initialization model on four small datasets

小数据集 1

64个训练,

16个测试

AUCSensitivitySpecificity
随机初始化0.7270.6830.683
ImageNet预训练模型0.7430.6670.667
DenseNet169⁃三胞胎网络(Hard Triplet Loss)0.8000.7240.724
DenseNet169⁃三胞胎网络(InfoNCE Loss)0.8000.7340.734
Multi⁃task LR模型0.7430.6610.661

小数据集 2

96个训练,

24个测试

随机初始化0.8360.7690.769
ImageNet预训练模型0.8520.7640.764
DenseNet169⁃三胞胎网络(Hard Triplet Loss)0.9010.8350.835
DenseNet169⁃三胞胎网络(InfoNCE Loss)0.8670.8090.809
Multi⁃task LR模型0.9000.8330.833

小数据集 3

140个训练,

35个测试

随机初始化0.8590.7930.793
ImageNet预训练模型0.8420.7540.754
DenseNet169⁃三胞胎网络(Hard Triplet Loss)0.9290.8650.865
DenseNet169⁃三胞胎网络(InfoNCE Loss)0.8890.8180.818
Multi⁃task LR模型0.8970.8340.834

小数据集 4

152个训练,

38个测试

随机初始化0.8320.7760.776
ImageNet预训练模型0.8480.7600.760
DenseNet169⁃三胞胎网络(Hard Triplet Loss)0.9360.8700.870
DenseNet169⁃三胞胎网络(InfoNCE Loss)0.9010.8370.837
Multi⁃task LR模型0.9290.8680.868