基于乳腺超声视频流和自监督对比学习的肿瘤良恶性分类系统
|
唐蕴芯, 廖梅, 张艳玲, 张建, 陈皓, 王炜
|
Breast tumor classification based on video stream and self⁃supervised contrastive learning
|
Yunxin Tang, Mei Liao, Yanling Zhang, Jian Zhang, Hao Chen, Wei Wang
|
|
表2 四种预训练模型在四种DenseNet框架下的实验结果对比
|
Table 2 Experimental results of four pre?trained models with four DenseNets as backbone
|
|
DenseNet121 | | AUC | Sensitivity | Specificity |
---|
随机初始化 | 0.894 | 0.818 | 0.818 |
---|
ImageNet预训练模型 | 0.875 | 0.786 | 0.786 |
---|
三胞胎网络+Hard Triplet Loss | 0.943 | 0.878 | 0.878 |
---|
三胞胎网络+InfoNCE Loss | 0.924 | 0.858 | 0.858 |
---|
DenseNet161 | 随机初始化 | 0.898 | 0.841 | 0.841 | ImageNet预训练模型 | 0.899 | 0.820 | 0.820 | 三胞胎网络+Hard Triplet Loss | 0.938 | 0.882 | 0.882 | 三胞胎网络+InfoNCE Loss | 0.903 | 0.831 | 0.831 | DenseNet169 | 随机初始化 | 0.897 | 0.831 | 0.831 | ImageNet预训练模型 | 0.866 | 0.788 | 0.788 | 三胞胎网络+Hard Triplet Loss | 0.952 | 0.890 | 0.890 | 三胞胎网络+InfoNCE Loss | 0.919 | 0.850 | 0.850 | DenseNet201 | 随机初始化 | 0.896 | 0.831 | 0.831 | ImageNet预训练模型 | 0.863 | 0.762 | 0.762 | 三胞胎网络+Hard Triplet Loss | 0.938 | 0.877 | 0.877 | 三胞胎网络+InfoNCE Loss | 0.926 | 0.850 | 0.850 |
|
|
|