基于乳腺超声视频流和自监督对比学习的肿瘤良恶性分类系统
唐蕴芯, 廖梅, 张艳玲, 张建, 陈皓, 王炜

Breast tumor classification based on video stream and self⁃supervised contrastive learning
Yunxin Tang, Mei Liao, Yanling Zhang, Jian Zhang, Hao Chen, Wei Wang
表2 四种预训练模型在四种DenseNet框架下的实验结果对比
Table 2 Experimental results of four pre?trained models with four DenseNets as backbone
DenseNet121AUCSensitivitySpecificity
随机初始化0.8940.8180.818
ImageNet预训练模型0.8750.7860.786
三胞胎网络+Hard Triplet Loss0.9430.8780.878
三胞胎网络+InfoNCE Loss0.9240.8580.858
DenseNet161随机初始化0.8980.8410.841
ImageNet预训练模型0.8990.8200.820
三胞胎网络+Hard Triplet Loss0.9380.8820.882
三胞胎网络+InfoNCE Loss0.9030.8310.831
DenseNet169随机初始化0.8970.8310.831
ImageNet预训练模型0.8660.7880.788
三胞胎网络+Hard Triplet Loss0.9520.8900.890
三胞胎网络+InfoNCE Loss0.9190.8500.850
DenseNet201随机初始化0.8960.8310.831
ImageNet预训练模型0.8630.7620.762
三胞胎网络+Hard Triplet Loss0.9380.8770.877
三胞胎网络+InfoNCE Loss0.9260.8500.850