基于Lightgbm和XGBoost的优化深度森林算法
谢军飞, 张海清, 李代伟, 于曦, 邓钧予

Optimized deep forest algorithm based on Lightgbm and XGBoost
Junfei Xie, Haiqing Zhang, Daiwei Li, Xi Yu, Junyu Deng
表6 LIGHT?XDF和十种对比算法在八个数据集上的算法执行时间的比较(s)
Table 6 Execution time (s) of LIGHT?XDF and other ten algorithms on eight datasets
数据集RFNBKNNSVMLightgbmXGBoostASTGNNada⁃mdflgb⁃dfGcforestLIGHT⁃XDF
Chemical Engineering0.6040.0630.4430.0720.4840.53113.2503.0831.4503.0601.785
EEE0.5450.0740.5380.0800.5470.56615.2743.2621.8603.1861.944
Mechanical Engineering0.5090.0590.4710.0680.5680.59514.7233.0461.6153.0771.783
Adult13.55712.63614.91026.4813.96313.104308.82071.79516.00289.21039.752
Dry_Bean3.8484.0742.6154.2622.5444.106254.23028.29919.40961.21460.437
Bank Marketing15.77512.35817.86812.3212.28015.303325.780115.70515.18070.72236.411
Winequality⁃red0.7190.1470.5670.2150.8720.97443.1525.6725.5395.4758.712
Winequality⁃white1.2120.3740.8390.8871.1111.20568.34516.8978.46015.93224.595