基于Lightgbm和XGBoost的优化深度森林算法
|
谢军飞, 张海清, 李代伟, 于曦, 邓钧予
|
Optimized deep forest algorithm based on Lightgbm and XGBoost
|
Junfei Xie, Haiqing Zhang, Daiwei Li, Xi Yu, Junyu Deng
|
|
表6 LIGHT?XDF和十种对比算法在八个数据集上的算法执行时间的比较(s)
|
Table 6 Execution time (s) of LIGHT?XDF and other ten algorithms on eight datasets
|
|
数据集 | RF | NB | KNN | SVM | Lightgbm | XGBoost | ASTGNN | ada⁃mdf | lgb⁃df | Gcforest | LIGHT⁃XDF |
---|
Chemical Engineering | 0.604 | 0.063 | 0.443 | 0.072 | 0.484 | 0.531 | 13.250 | 3.083 | 1.450 | 3.060 | 1.785 | EEE | 0.545 | 0.074 | 0.538 | 0.080 | 0.547 | 0.566 | 15.274 | 3.262 | 1.860 | 3.186 | 1.944 | Mechanical Engineering | 0.509 | 0.059 | 0.471 | 0.068 | 0.568 | 0.595 | 14.723 | 3.046 | 1.615 | 3.077 | 1.783 | Adult | 13.557 | 12.636 | 14.910 | 26.48 | 13.963 | 13.104 | 308.820 | 71.795 | 16.002 | 89.210 | 39.752 | Dry_Bean | 3.848 | 4.074 | 2.615 | 4.262 | 2.544 | 4.106 | 254.230 | 28.299 | 19.409 | 61.214 | 60.437 | Bank Marketing | 15.775 | 12.358 | 17.868 | 12.32 | 12.280 | 15.303 | 325.780 | 115.705 | 15.180 | 70.722 | 36.411 | Winequality⁃red | 0.719 | 0.147 | 0.567 | 0.215 | 0.872 | 0.974 | 43.152 | 5.672 | 5.539 | 5.475 | 8.712 | Winequality⁃white | 1.212 | 0.374 | 0.839 | 0.887 | 1.111 | 1.205 | 68.345 | 16.897 | 8.460 | 15.932 | 24.595 |
|
|
|