基于Lightgbm和XGBoost的优化深度森林算法
|
谢军飞, 张海清, 李代伟, 于曦, 邓钧予
|
Optimized deep forest algorithm based on Lightgbm and XGBoost
|
Junfei Xie, Haiqing Zhang, Daiwei Li, Xi Yu, Junyu Deng
|
|
表5 LIGHT?XDF和十种对比算法在八个数据集上的算法AUC比较
|
Table 5 AUC of LIGHT?XDF and other ten algorithms on eight datasets
|
|
数据集 | RF | NB | KNN | SVM | Lightgbm | XGBoost | ASTGNN | ada⁃mdf | lgb⁃df | Gcforest | LIGHT⁃XDF |
---|
Chemical Engineering | 0.988 | 0.953 | 0.673 | 0.696 | 0.971 | 0.988 | 0.946 | 0.972 | 0.988 | 0.977 | 0.988 | EEE | 0.968 | 0.949 | 0.708 | 0.689 | 0.961 | 0.980 | 0.975 | 0.977 | 0.962 | 0.987 | 0.994 | Mechanical Engineering | 0.959 | 0.918 | 0.633 | 0.619 | 0.945 | 0.972 | 0.982 | 0.919 | 0.972 | 0.959 | 0.973 | Adult | 0.766 | 0.809 | 0.777 | 0.620 | 0.797 | 0.798 | 0.742 | 0.769 | 0.793 | 0.784 | 0.790 | Dry_Bean | 0.957 | 0.862 | 0.835 | 0.786 | 0.958 | 0.956 | 0.892 | 0.946 | 0.959 | 0.949 | 0.959 | Bank Marketing | 0.684 | 0.716 | 0.622 | 0.505 | 0.734 | 0.730 | 0.674 | 0.672 | 0.726 | 0.695 | 0.708 | Winequality⁃red | 0.799 | 0.731 | 0.707 | 0.710 | 0.791 | 0.797 | 0.751 | 0.784 | 0.806 | 0.780 | 0.811 | Winequality⁃white | 0.802 | 0.683 | 0.690 | 0.669 | 0.807 | 0.801 | 0.751 | 0.760 | 0.796 | 0.750 | 0.804 |
|
|
|