基于Lightgbm和XGBoost的优化深度森林算法
谢军飞, 张海清, 李代伟, 于曦, 邓钧予

Optimized deep forest algorithm based on Lightgbm and XGBoost
Junfei Xie, Haiqing Zhang, Daiwei Li, Xi Yu, Junyu Deng
表5 LIGHT?XDF和十种对比算法在八个数据集上的算法AUC比较
Table 5 AUC of LIGHT?XDF and other ten algorithms on eight datasets
数据集RFNBKNNSVMLightgbmXGBoostASTGNNada⁃mdflgb⁃dfGcforestLIGHT⁃XDF
Chemical Engineering0.9880.9530.6730.6960.9710.9880.9460.9720.9880.9770.988
EEE0.9680.9490.7080.6890.9610.9800.9750.9770.9620.9870.994
Mechanical Engineering0.9590.9180.6330.6190.9450.9720.9820.9190.9720.9590.973
Adult0.7660.8090.7770.6200.7970.7980.7420.7690.7930.7840.790
Dry_Bean0.9570.8620.8350.7860.9580.9560.8920.9460.9590.9490.959
Bank Marketing0.6840.7160.6220.5050.7340.7300.6740.6720.7260.6950.708
Winequality⁃red0.7990.7310.7070.7100.7910.7970.7510.7840.8060.7800.811
Winequality⁃white0.8020.6830.6900.6690.8070.8010.7510.7600.7960.7500.804