基于Lightgbm和XGBoost的优化深度森林算法
谢军飞, 张海清, 李代伟, 于曦, 邓钧予

Optimized deep forest algorithm based on Lightgbm and XGBoost
Junfei Xie, Haiqing Zhang, Daiwei Li, Xi Yu, Junyu Deng
表4 LIGHT?XDF和十种对比算法在八个数据集上的算法的F1比较
Table 4 F1 of LIGHT?XDF and other ten algorithms on eight datasets
数据集RFNBKNNSVMLightgbmXGBoostASTGNNada⁃mdflgb⁃dfGcforestLIGHT⁃XDF
Chemical Engineering0.9800.9270.4320.3830.9370.9790.9630.9380.9800.9630.980
EEE0.9380.9200.5310.3710.9420.9730.9880.9590.9390.9760.990
Mechanical Engineering0.9100.8510.4420.2570.8990.9490.9340.8250.9580.9100.950
Adult0.8390.8190.8410.7560.8650.8660.9240.8480.8640.8570.864
Dry_Bean0.9260.7610.7160.6000.9280.9260.9420.9080.9310.9130.931
Bank Marketing0.8970.8580.8700.8340.9050.9000.8870.8940.9050.8990.901
Winequality⁃red0.6460.5390.4900.4710.6380.6470.6250.6160.6630.6060.668
Winequality⁃white0.6470.4460.4550.3090.6610.6520.6120.5670.6410.5470.651