基于Lightgbm和XGBoost的优化深度森林算法
|
谢军飞, 张海清, 李代伟, 于曦, 邓钧予
|
Optimized deep forest algorithm based on Lightgbm and XGBoost
|
Junfei Xie, Haiqing Zhang, Daiwei Li, Xi Yu, Junyu Deng
|
|
表4 LIGHT?XDF和十种对比算法在八个数据集上的算法的F1比较
|
Table 4 F1 of LIGHT?XDF and other ten algorithms on eight datasets
|
|
数据集 | RF | NB | KNN | SVM | Lightgbm | XGBoost | ASTGNN | ada⁃mdf | lgb⁃df | Gcforest | LIGHT⁃XDF |
---|
Chemical Engineering | 0.980 | 0.927 | 0.432 | 0.383 | 0.937 | 0.979 | 0.963 | 0.938 | 0.980 | 0.963 | 0.980 | EEE | 0.938 | 0.920 | 0.531 | 0.371 | 0.942 | 0.973 | 0.988 | 0.959 | 0.939 | 0.976 | 0.990 | Mechanical Engineering | 0.910 | 0.851 | 0.442 | 0.257 | 0.899 | 0.949 | 0.934 | 0.825 | 0.958 | 0.910 | 0.950 | Adult | 0.839 | 0.819 | 0.841 | 0.756 | 0.865 | 0.866 | 0.924 | 0.848 | 0.864 | 0.857 | 0.864 | Dry_Bean | 0.926 | 0.761 | 0.716 | 0.600 | 0.928 | 0.926 | 0.942 | 0.908 | 0.931 | 0.913 | 0.931 | Bank Marketing | 0.897 | 0.858 | 0.870 | 0.834 | 0.905 | 0.900 | 0.887 | 0.894 | 0.905 | 0.899 | 0.901 | Winequality⁃red | 0.646 | 0.539 | 0.490 | 0.471 | 0.638 | 0.647 | 0.625 | 0.616 | 0.663 | 0.606 | 0.668 | Winequality⁃white | 0.647 | 0.446 | 0.455 | 0.309 | 0.661 | 0.652 | 0.612 | 0.567 | 0.641 | 0.547 | 0.651 |
|
|
|