基于Lightgbm和XGBoost的优化深度森林算法
|
谢军飞, 张海清, 李代伟, 于曦, 邓钧予
|
Optimized deep forest algorithm based on Lightgbm and XGBoost
|
Junfei Xie, Haiqing Zhang, Daiwei Li, Xi Yu, Junyu Deng
|
|
表3 LIGHT?XDF和十种对比算法在八个数据集上的算法召回率比较
|
Table 3 Model recall rates of LIGHT?XDF and other ten algorithms on eight datasets
|
|
数据集 | RF | NB | KNN | SVM | Lightgbm | XGBoost | ASTGNN | ada⁃mdf | lgb⁃df | Gcforest | LIGHT⁃XDF |
---|
Chemical Engineering | 0.875 | 0.808 | 0.249 | 0.251 | 0.753 | 0.875 | 0.861 | 0.991 | 0.875 | 0.866 | 0.881 | EEE | 0.75 | 0.783 | 0.353 | 0.253 | 0.721 | 0.901 | 0.9 | 0.911 | 0.729 | 0.833 | 0.922 | Mechanical Engineering | 0.75 | 0.714 | 0.327 | 0.25 | 0.66 | 0.833 | 0.796 | 0.75 | 0.842 | 0.75 | 0.833 | Adult | 0.769 | 0.798 | 0.777 | 0.62 | 0.793 | 0.798 | 0.884 | 0.775 | 0.792 | 0.783 | 0.798 | Dry_Bean | 0.936 | 0.762 | 0.716 | 0.624 | 0.934 | 0.936 | 0.91 | 0.913 | 0.939 | 0.92 | 0.94 | Bank Marketing | 0.683 | 0.715 | 0.621 | 0.73 | 0.732 | 0.73 | 0.697 | 0.685 | 0.725 | 0.695 | 0.714 | Winequality⁃red | 0.367 | 0.371 | 0.254 | 0.205 | 0.36 | 0.36 | 0.343 | 0.284 | 0.379 | 0.285 | 0.373 | Winequality⁃white | 0.363 | 0.312 | 0.223 | 0.145 | 0.378 | 0.393 | 0.413 | 0.309 | 0.362 | 0.254 | 0.354 |
|
|
|