基于Lightgbm和XGBoost的优化深度森林算法
谢军飞, 张海清, 李代伟, 于曦, 邓钧予

Optimized deep forest algorithm based on Lightgbm and XGBoost
Junfei Xie, Haiqing Zhang, Daiwei Li, Xi Yu, Junyu Deng
表2 LIGHT?XDF和十种对比算法在八个数据集上的算法精度比较
Table 2 Classification accuracy of LIGHT?XDF and other ten algorithms on eight datasets
数据集RFNBKNNSVMLightgbmXGBoostASTGNNada⁃mdflgb⁃dfGcforestLIGHT⁃XDF
Chemical Engineering98.25%92.98%50.88%54.39%95.74%98.25%97.92%95.75%98.25%96.49%98.25%
EEE95.24%92.38%56.19%53.33%94.29%97.14%96.25%96.55%94.29%98.10%99.05%
Mechanical Engineering93.88%87.76%44.90%42.86%91.84%95.92%91.07%87.81%96.42%93.88%95.92%
Adult84.33%81.10%84.33%79.36%86.94%87.14%94.25%85.40%86.91%86.29%86.95%
Dry_Bean92.63%76.35%71.79%63.37%92.87%92.61%91.75%90.74%93.05%91.31%93.05%
Bank Marketing90.68%84.70%88.37%88.56%91.04%90.71%92.61%90.59%91.07%90.75%90.87%
Winequality⁃red66.46%55.21%51.25%51.67%65.21%66.25%72.36%64.00%67.71%63.33%68.54%
Winequality⁃white66.12%45.58%46.94%43.27%67.01%66.05%63.74%58.94%65.03%57.21%66.40%