基于自适应环境因子熵权决策的多目标特征选择
李涛, 李佳霖, 阮宁, 徐久成

Adaptive environmental factor entropy weight decision⁃making⁃based multi⁃objective feature selection
Tao Li, Jialin Li, Ning Ruan, Jiucheng Xu
表3 AMFS与五种多目标进化算法的性能比较
Table 3 Performance of AMFS and other five multi?objective evolutionary algorithms
数据集性能指标MOFSBDEFSMOPSONSGAFSDCDREANSGA⁃ⅡAMFS
VehicleBest97.81%95.31%98.21%97.82%81.81%98.99%
Avg93.48%91.22%97.11%95.99%82.82%97.66%
WineBest89.32%90.89%97.92%96.21%84.42%97.78%
Avg86.56%87.01%94.24%93.37%83.32%96.63%
SonarBest83.29%84.10%91.59%89.23%77.32%93.31%
Avg79.99%80.11%87.31%88.42%77.39%91.99%
IonosphereBest94.59%100%89.95%100%65.12%99.82%
Avg91.70%97.89%86.67%98.78%64.31%98.99%
VowelBest97.57%85.68%75.79%97.77%66.83%99.13%
Avg96.62%84.70%73.99%96.10%57.83%97.75%
SegmentationBest97.73%97.22%98.91%100%89.80%100%
Avg96.86%96.61%97.45%97.65%87.79%98.89%
AD_Best93.82%92.68%93.97%97.91%77.55%98.22%
AD_Avg91.35%90.55%91.41%95.58%75.57%97.11%
T⁃test_Best0.02639 (+)0.03083 (+)0.16461 (-)0.08581 (-)0.00444 (+)
T⁃test_Avg0.01919 (+)0.01489 (+)0.09646 (-)0.01350 (+)0.00851 (+)