卷积神经网络与人工水母搜索的图特征选择方法
孙林, 蔡怡文
Convolutional Neural Network and Artificial Jellyfish Search⁃based graph feature selection method
Lin Sun, Yiwen Cai
表1
10个基准测试函数的描述
Table 1
Description of ten benchmark test functions
No.
Name
Functions
Range
Optimum
f
1
Sphere
f
x
=
∑
i
=
1
n
x
i
2
-
5.12,5.12
0
f
2
Schwefel 2.22
f
x
=
∑
i
=
1
n
x
i
+
∏
i
=
1
n
x
i
-
10,10
0
f
3
Schwefel 2.21
f
x
=
m
a
x
i
x
i
,
1
≤
x
≤
n
-
100,100
0
f
4
Rastrigin
f
x
=
∑
i
=
1
n
x
i
2
-
10
c
o
s
2
π
x
i
+
10
-
5.12,5.12
0
f
5
Ackley
f
x
=
-
20
e
x
p
-
0.2
1
n
∑
i
=
1
n
x
i
2
-
e
x
p
1
n
∑
i
=
1
n
c
o
s
2
π
x
i
+
20
+
e
-
30,30
0
f
6
Griewank
f
x
=
1
4000
∑
i
=
1
n
x
i
2
-
∏
i
=
1
n
c
o
s
x
i
/
i
+
1
-
600,600
0
f
7
Schwefe l1.2
f
x
=
∑
i
=
1
n
∑
j
=
1
i
x
j
2
-
100,100
0
f
8
Quartic
f
x
=
∑
i
=
1
n
i
x
4
+
r
a
n
d
o
m
0,1
-
1.28,1.28
0
f
9
Rosenbrock
f
(
x
)
=
∑
i
=
1
n
100
x
i
+
1
-
x
i
2
2
+
x
i
-
1
2
-
30,30
0
f
10
Penalized2
f
x
=
0.1
s
i
n
2
3
π
x
1
+
∑
i
=
1
n
x
i
-
1
2
1
+
s
i
n
2
3
π
x
i
+
1
+
x
n
-
1
2
1
+
s
i
n
2
2
π
x
i
+
1
+
∑
i
=
1
n
u
x
i
,
5,100,4
-
50,50
0