基于时空特征学习Transformer的运动想象脑电解码方法
|
宋耀莲, 殷喜喆, 杨俊
|
Transformer based on temporal⁃spatial feature learning for motor imagery electroencephalogram signal decoding
|
Yaolian Song, Xizhe Yin, Jun Yang
|
|
表1 本文方法与其他方法测试不同受试者的正确率与Kappa系数
|
Table 1 Accuracy and Kappa coefficient of our method and other methods for different subjects
|
|
Subject | C2CM[21] | S3T[2] | EEGNet[20] | FBSF⁃TSCNN[22] | Our method |
---|
Acc | Pk | Acc | Pk | Acc | Pk | Acc | Pk | Acc | Pk |
---|
Average | 74.46% | - | 82.59% | - | 64.60% | 0.734 | 62.70% | 0.720 | 84.16% | 0.844 | A01 | 87.50% | - | 91.67% | - | 79.20% | 0.844 | 81.00% | 0.858 | 94.50% | 0.930 | A02 | 66.28% | - | 71.67% | - | 33.50% | 0.501 | 46.80% | 0.601 | 79.76% | 0.836 | A03 | 90.28% | - | 95.00% | - | 84.10% | 0.881 | 83.80% | 0.878 | 93.70% | 0.913 | A04 | 66.67% | - | 78.33% | - | 50.90% | 0.631 | 52.30% | 0.642 | 84.39% | 0.788 | A05 | 62.50% | - | 61.67% | - | 54.30% | 0.657 | 31.60% | 0.486 | 58.67% | 0.692 | A06 | 45.49% | - | 66.67% | - | 47.00% | 0.602 | 42.60% | 0.569 | 70.80% | 0.772 | A07 | 89.85% | - | 96.67% | - | 82.20% | 0.866 | 77.30% | 0.830 | 94.14% | 0.920 | A08 | 83.33% | - | 93.33% | - | 73.20% | 0.799 | 75.50% | 0.816 | 90.88% | 0.880 | A09 | 79.51% | - | 88.33% | - | 77.00% | 0.827 | 73.60% | 0.802 | 90.67% | 0.873 |
|
|
|