基于生成式对抗网络的自监督多元时间序列异常检测方法
周业瀚, 沈子钰, 周清, 李云

Self⁃supervised multivariate time series anomaly detection based on GAN
Yehan Zhou, Ziyu Shen, Qing Zhou, Yun Li
表2 CPCGAN与其他五种对比方法异常点检测的评价指标情况
Table 2 Performanceof CPCGAN and five baseline approaches on anomalous points detection
SWaTWADISMDSMAPMSL
PRF1PRF1PRF1PRF1PRF1
CPCGAN0.98150.6610.78990.9910.13160.23230.95110.94840.94970.75810.98220.85570.8820.96860.9232
AE0.93240.57340.71010.30740.1790.22620.56840.78940.66090.56330.62230.59150.5710.66410.614
MAD⁃GAN0.95850.61660.75040.98420.13510.23750.87220.80750.83860.71060.95210.81380.84570.95460.8968
LSTM⁃VAE0.96550.62180.75640.98450.13340.23490.85920.80120.82910.70560.97520.81870.86010.96630.9101
DAGMM0.45760.6710.54410.08510.91170.15560.65730.85490.74310.62340.97760.76130.74670.98170.8482
TadGAN0.95250.64810.77130.95610.12460.22040.91410.93620.9250.74130.98670.84650.90520.89320.8991