基于生成式对抗网络的自监督多元时间序列异常检测方法
|
周业瀚, 沈子钰, 周清, 李云
|
Self⁃supervised multivariate time series anomaly detection based on GAN
|
Yehan Zhou, Ziyu Shen, Qing Zhou, Yun Li
|
|
表2 CPCGAN与其他五种对比方法异常点检测的评价指标情况
|
Table 2 Performanceof CPCGAN and five baseline approaches on anomalous points detection
|
|
| SWaT | WADI | SMD | SMAP | MSL |
---|
P | R | F1 | P | R | F1 | P | R | F1 | P | R | F1 | P | R | F1 |
---|
CPCGAN | 0.9815 | 0.661 | 0.7899 | 0.991 | 0.1316 | 0.2323 | 0.9511 | 0.9484 | 0.9497 | 0.7581 | 0.9822 | 0.8557 | 0.882 | 0.9686 | 0.9232 | AE | 0.9324 | 0.5734 | 0.7101 | 0.3074 | 0.179 | 0.2262 | 0.5684 | 0.7894 | 0.6609 | 0.5633 | 0.6223 | 0.5915 | 0.571 | 0.6641 | 0.614 | MAD⁃GAN | 0.9585 | 0.6166 | 0.7504 | 0.9842 | 0.1351 | 0.2375 | 0.8722 | 0.8075 | 0.8386 | 0.7106 | 0.9521 | 0.8138 | 0.8457 | 0.9546 | 0.8968 | LSTM⁃VAE | 0.9655 | 0.6218 | 0.7564 | 0.9845 | 0.1334 | 0.2349 | 0.8592 | 0.8012 | 0.8291 | 0.7056 | 0.9752 | 0.8187 | 0.8601 | 0.9663 | 0.9101 | DAGMM | 0.4576 | 0.671 | 0.5441 | 0.0851 | 0.9117 | 0.1556 | 0.6573 | 0.8549 | 0.7431 | 0.6234 | 0.9776 | 0.7613 | 0.7467 | 0.9817 | 0.8482 | TadGAN | 0.9525 | 0.6481 | 0.7713 | 0.9561 | 0.1246 | 0.2204 | 0.9141 | 0.9362 | 0.925 | 0.7413 | 0.9867 | 0.8465 | 0.9052 | 0.8932 | 0.8991 |
|
|
|