基于张量特征的小样本图像快速分类方法
|
张艳莎, 冯夫健, 王杰, 潘凤, 谭棉, 张再军, 王林
|
Tensor feature⁃based faster classification network for few⁃shot learning
|
Yansha Zhang, Fujian Feng, Jie Wang, Feng Pan, Mian Tan, Zaijun Zhang, Lin Wang
|
|
表1 小样本图像分类算法的对比
|
Table 1 Comparison of few?shot image classification algorithms
|
|
Method | Backbone | miniImageNet | CUB | CIFAR⁃FS |
---|
1⁃shot | 5⁃shot | 1⁃shot | 5⁃shot | 1⁃shot | 5⁃shot |
---|
IDeMet⁃Net[9] | ResNet⁃18 | 59.14±0.86 | 74.63±0.74 | - | - | - | - | AFHN[12] | ResNet⁃18 | 62.38±0.72 | 78.16±0.56 | 70.53±1.01 | 83.95±0.63 | 68.32±0.93 | 81.45±0.87 | VI⁃Net[14] | ResNet⁃18 | 61.05 | 78.60 | 74.76 | 86.84 | - | - | CFA⁃PN[18] | ResNet⁃12 | 60.47±0.61 | 77.82±0.44 | | | | | Dual TriNet[19] | ResNet⁃18 | 58.80±1.37 | 76.71±0.69 | 69.61 | 84.10 | 63.41±0.64 | 78.43±0.64 | EDANet+ PrototypicalNet[20] | ResNet⁃50 | 63.35 | 79.74 | - | - | - | - | TFFCN | ResNet⁃18 | 63.99±0.80 | 79.95±0.61 | 75.13±0.86 | 88.08±0.47 | 73.00±0.95 | 86.52±0.62 |
|
|
|