南京大学学报(自然科学), 2022, 58(3): 540-559 doi: 10.13232/j.cnki.jnju.2022.03.017

石墨烯基吸波材料的研究进展

倪梦然1, 张超智,2, 高蕾,3

1.南京信息工程大学化学与材料学院,南京,210044

2.南京信息工程大学环境科学与工程学院,南京,210044

3.华北地质勘查局商检公司,天津,300181

Research progress of graphene⁃based electromagnetic wave absorbing materials

Ni Mengran1, Zhang Chaozhi,2, Gao Lei,3

1.School of Chemistry and Materials, Nanjing University of Information Science and Technology, Nanjing, 210044, China

2.School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China

3.Tianjin Huakan Commodity Inspection Co. LTD,Tianjin,300181,China

通讯作者: E⁃mail:zhangchaozhi@nuist.edu.cnE⁃mail: 591216071@qq.com

收稿日期: 2022-04-13  

基金资助: 国家自然科学基金.  11305091
江苏省六大人才高峰项目.  R2015L12

Received: 2022-04-13  

摘要

电子信息技术的飞速发展,使电磁污染问题日益严重,开发具有“薄、轻、宽、强”性质的吸波材料显得尤为重要.石墨烯材料有着大比表面积、高电导、密度低和强介电损耗等优点,但也存在阻抗匹配性差、损耗机制单一等缺陷.对石墨烯的形貌和结构等进行设计,能够有效改善阻抗失配的问题.此外,将石墨烯材料与其他损耗材料复合构造多元协同损耗的复合材料,能够实现对电磁波的高效、宽频吸收.简要讨论了电磁吸波机理,综述了近年来石墨烯基吸波材料的研究现状,并对其未来研究方向进行展望.

关键词: 石墨烯 ; 吸波材料 ; 复合材料 ; 阻抗匹配 ; 电磁损耗机制

Abstract

The electromagnetic pollution has become a serious problem due to rapid development of electronic information technology. It is urgent to develop electromagnetic wave absorbing materials with "thin,light,wide and strong" features. Graphene materials have unique properties,such as high specific surface area,high electronic conductivity,low density and strong dielectric loss. However,they also have poor impedance matching and single electromagnetic loss mechanism. The poor impedance matching of graphene could be improved effectively through the regulation of the morphology,structure and so on. Besides,composite materials of combination of graphene with other electromagnetic loss materials exhibited multiple synergistic effects,which resulted high⁃efficiency and broadband absorption. In this paper,we briefly explain mechanism of electromagnetic absorption,review the recent development of electromagnetic wave absorbing materials and predict research areas of graphene⁃based electromagnetic wave absorbing materials in the future.

Keywords: graphene ; absorbing materials ; composite materials ; impedance match ; electromagnetic loss mechanism

PDF (3342KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

倪梦然, 张超智, 高蕾. 石墨烯基吸波材料的研究进展. 南京大学学报(自然科学)[J], 2022, 58(3): 540-559 doi:10.13232/j.cnki.jnju.2022.03.017

Ni Mengran, Zhang Chaozhi, Gao Lei. Research progress of graphene⁃based electromagnetic wave absorbing materials. Journal of nanjing University[J], 2022, 58(3): 540-559 doi:10.13232/j.cnki.jnju.2022.03.017

电子和计算机技术的进步,使得各种电子设备如智能手机、基站等广泛应用于民用、航空航天和军事等领域1-2.这些电子设备在给我们的生活带来便利的同时,也产生了大量的电磁波3.现代科技的快速发展对电子设备的精密度有更高的要求,然而电子设备在工作中会向外不断发射电磁波,这些电磁波会干扰周围的电路或者精密电子设备4-5,不仅严重影响电子器件的精密度,也制约了电子行业的发展6.大量的电磁辐射还会危害人类健康,高能电磁辐射会引起体温异常与蛋白质失活,增加基因突变的可能性,长期暴露于强电磁辐射下甚至会引发头晕、失眠、癌症等疾病7.此外,军事设备需要摆脱电磁波的探测,达到隐身的目的8-10.吸波材料能够有效吸收入射电磁波,对其进行衰减11-12.因此,开发新型吸波材料实现高效电磁辐射吸收变得至关重要.当前的吸波材料有铁氧体13-14、磁性金属15和聚合物16等,但这些材料存在的阻抗匹配低、有效吸收宽带窄、耐热性差、不耐腐蚀和高填充率等缺点,限制了其发展.优异的吸波材料应具有轻量化、低密度、低厚度、强吸收、宽吸收带、抗氧化和热稳定等特性17-19.碳纳米结构化合物如碳纳米管20、石墨烯等具有低密度、高比表面积和高介电常数等特点,满足高性能吸波材料的要求,在电磁防护领域有着巨大前景21.

自2004年首次通过机械剥离得到石墨烯以来,石墨烯一直受到研究者们的青睐22.石墨烯是由单层排列的碳原子形成的六边形蜂窝状晶体.优异的物理和化学性质使其在燃料电池23-25、超级电容器26-28、场效应晶体管29-31和传感器32-34等领域有良好的发展前景.

此外,石墨烯有着可调谐电性能、高机械强度、高介电损耗和耐腐蚀等诸多理想性能35-41,当其用作填料填充在基质中时,这些特性使其能够在极低的填充率下提供强导电损耗和强极化损耗.石墨烯能够将入射电磁波吸收并转换成热能耗散掉,从而起到衰减电磁波的作用.因此,石墨烯能够应用于电磁吸波材料领域.石墨烯独特的能带结构能够实现电子与空穴分离,产生新的电子传导途径.此外,还原氧化石墨烯中残留的官能团,不仅有效地改善了阻抗匹配问题,而且引入了缺陷极化弛豫和群电子偶极弛豫等新的损耗机制.根据麦克斯韦理论,过度的导电损耗会使阻抗匹配失衡,导致微波反射的增加,不利于微波吸收42-43.高导电性与低磁损耗引起的阻抗不匹配,以及有限的损耗机制,使得石墨烯单独作为吸收剂填料时会降低阻抗匹配和电磁吸波性能44-45.因此,需要对石墨烯化合物进行结构、形貌等的调整,或者将其与其他损耗材料复合以实现电磁波的高效吸收.目前,已经设计并制备了多种石墨烯基纳米复合吸波材料,包括石墨烯/碳纳米材料、石墨烯/铁氧体材料、石墨烯/导电聚合物和石墨烯/磁性纳米颗粒等.

1 吸波机理

电磁波照射在损耗材料上时产生的入射功率可以分三部分:透射功率、反射功率和吸收功率.电磁波的反射包括表面反射和多次反射,其中,多次反射能延长电磁波在材料内部的传播路径,从而增强材料的吸波能力.因此,对材料的结构进行调整,使其具有特殊的结构和形貌是一种增强其吸波能力的有效方法.此外,材料对电磁波的吸收也与其自身的电磁参数相关.相对复介电常数εrεr =ε'-iε")和相对复磁导率μrμr =μ'-jμ")中,ε'μ'与储能有关,ε"μ"与能量耗散有关.这些参数可以通过矢量网络分析仪测量得到.

介电损耗正切tanδE和磁损耗正切tanδM分别表示吸波材料的介电和磁损耗能力.介电损耗主要包括导电损耗、界面极化弛豫和偶极极化弛豫等,磁损耗则主要由自然共振、涡流损耗与交换共振组成.介电损耗正切tanδE和磁损耗正切tanδM可以由下式计算得到:

tanδE=ε''ε'
tanδM=μ''μ'

其中,ε'ε"分别是相对复介电常数实部和虚部,μ'μ"分别是相对复磁导率的实部和虚部.

通常来说,反射损耗(Reflection Loss,RL)和相对阻抗Z是评估材料吸波性能的标准.根据传输线理论,可以通过下式得到:

Zin=Z0μrεrtanhj2πfdcμr×εr
RL=20 lgZin-Z0Zin+Z0

其中,c为光速,f为电磁波频率,d为吸波材料的厚度,Z0为自由空间阻抗,εr 为相对复介电常数,μr 为相对复磁导率46.

相对输入阻抗Z接近1,即吸波材料表面阻抗与自由空间阻抗越接近,入射的电磁波能够更大程度地进入吸波材料内部,而不是在其表面被反射.这是优异的吸波材料必须具备的基本条件.有效带宽是指反射损耗RL大于某个给定阈值的频率跨度.其中,RL=-10 dB表示吸波材料对入射电磁波实现90%的吸收;RL=-20 dB表示吸波材料对入射电磁波实现99%的吸收.

因此,性能优越的吸波材料应该具备强电磁损耗、宽吸收带、薄厚度和适当的阻抗匹配.

2 石墨烯基吸波材料研究进展

由于具有强导电性、大比表面和低密度等优点,石墨烯在电磁吸波材料领域引起了极大的关注.但是,良好的导电性在赋予石墨烯强介电损耗优点的同时,也导致其阻抗匹配性差的问题,使得大部分照射在材料表面的电磁波被反射,难以透射进入吸波材料.并且,石墨烯仅具备介电损耗能力,不具有磁损耗能力,对电磁波的损耗机制单一,这也不利于石墨烯在吸波材料领域的发展.为了改善石墨烯阻抗匹配性差与损耗机制单一的问题,科研工作者们进行了大量的研究.实验结果表明,调控石墨烯基材料的微结构和介电性能是实现强电磁损耗与阻抗匹配的有效方法.

因此,本文将石墨烯基吸波材料分为石墨烯一元材料、石墨烯二元材料和石墨烯多组分材料分别进行介绍.

2.1 石墨烯一元材料

石墨烯有着低密度、大比表面积、机械性能好和耐腐蚀的优点,但高介电常数与无磁损能力引起的阻抗失配,难以实现大规模的工业量产,以及在基体中分散困难等因素,使得纯石墨烯材料的吸波能力不甚理想47.在石墨烯上引入取代基团,能够改变石墨烯的化学结构,打破石墨烯的本征对称性,使得部分sp2杂化的碳原子转变为sp3杂化.此外,取代基团的引入也会改变石墨烯的结构,使原本的平面结构发生扭曲,减小了石墨烯的共轭,使其导电性有所降低.另一方面,异质原子与石墨烯上的碳原子的电负性不同,取代基团与石墨烯之间的电子云会发生重新排列,这就使本征石墨烯中原本均匀分布的电子云密度发生变化,最终使得石墨烯中电子的去局域化程度降低48.电负性差异引起的电子离域程度降低、平面结构扭曲引发的共轭程度减小,都会降低石墨烯的导电性,减小介电参数,有利于改善阻抗不匹配的问题.经过对石墨粉末进行氧化剥离,再进行还原得到的还原氧化石墨烯,能够以低成本实现石墨烯的大规模生产.还原氧化石墨烯中残留的含氧官能团如羟基、羧基和环氧基等能够显著降低石墨烯的介电性能,提高其阻抗匹配能力.还原氧化石墨烯的介电性能主要由化学还原程度、杂原子掺杂和含量等决定49.

还原氧化石墨烯的还原程度决定了导电片层的数量和尺寸,进而影响到介电性能的改变.Bhattacharyya et al50研究了化学还原程度对石墨烯介电和吸波性能的影响.他们通过微波控制技术对氧化石墨烯进行了可控的还原,在保持石墨烯碳骨架完整的情况下,实现对结构缺陷和局部电子浓度的有效控制.随着微波处理时间的增加,堆叠的石墨烯薄片被剥离并形成褶皱结构.RGO的结构缺陷增加,增强了极化弛豫,含氧基团的减少.石墨化结构的恢复也使得导电损耗增加.最终,高还原度的RGO实现了对阻抗匹配和电磁波损耗的较好平衡.材料在4~15 GHz频率范围内的吸收率达96%.

石墨烯不含有磁组分,对入射电磁波的损耗只能通过介电损耗实现.因此,调节阻抗匹配特性,使得更多入射电磁波进入石墨烯材料内部是增强石墨烯吸波性能的有效措施.电磁超材料能够通过微结构设计来实现阻抗匹配51-53.与二维片层结构的石墨烯相比,通过冷冻干燥、水热自组装等方法,石墨烯能够形成海绵、气凝胶和泡沫等形貌的3D材料54-56.由于多孔隙和3D空间构型的存在,这类具有特殊形貌的石墨烯具有更低的密度和较合适的阻抗匹配,能够增加多次反射和界面极化,进而增强介电损耗.Sun et al57通过冷冻干燥和化学气相还原制备了球形、立方体形、六棱柱形和平截头棱锥形的石墨烯海绵.得益于多孔结构增加了电磁波的多次反射,具有平截头棱锥形的石墨烯海绵实现了超宽频带的有效吸收(37.6 GHz).因此,具有这种特殊形貌的石墨烯海绵无疑会在宽带电磁防护领域有重要的发展前景.Huang et al58通过冻融组装法合成了蜂窝状石墨烯气凝胶.轻质(5.83 mg·cm-3)和多孔(94.9%)的结构使石墨烯气凝胶有着大量的内部孔隙,能够与自由空间形成较好的阻抗匹配,增加电磁波的透射.均匀微孔结构的3D多孔网络的形成,能够显著增强介电损耗的能力.此外,轻质与高孔隙率使其具有更高的比表面积和更多的边缘原子,也无疑会增强入射电磁波在其内部的多重散射,增强界面极化(图1).通过还原时间实现对气凝胶孔隙大小的调控,进而解释了气凝胶的孔结构与其微波吸收性能之间的关系,这为石墨烯气凝胶孔结构工程向超轻质电磁吸波材料的发展提供了新的途径.此外,优异的抗霜与隔热性质使其在特殊环境下有着良好的应用前景.

图1

图1   RGO多孔气凝胶的吸波机理示意图[58]

Fig.1   Schematic illustration of the electromagnetic wave absorption mechanism of RGO aerogels based on pore structure engineering (after ref.[58])


杂原子掺杂能够有效调节石墨烯的电子和化学性质59-61.因此,除了调控石墨烯的微观结构,构建3D多孔网络体系之外,杂原子掺杂也被认为是一种调节石墨烯电学和化学性质的有效方法62-63.由于杂原子的原子大小、键长和核外电子数都不同于碳原子,所以杂原子能够在碳原子附近引入大量的点缺陷,改善其表面电子结构和导电性,赋予石墨烯材料更多的活性位点.杂原子的引入不仅有效提高了石墨烯的电导率,增强了导电损耗,而且在掺杂过程中引入了大量结构缺陷,为石墨烯引入了极化弛豫损耗.其中,氮原子的尺寸、分子量与碳原子相近,有利于诱导产生无序的碳结构,提高石墨烯的导电性,加速电子运输.此外,由于π共轭效应,氮原子掺杂可以在石墨烯边缘和缺陷处引入0.95 μB的磁矩,使其富有一定的磁性64-65,改善因高介电性能引起的阻抗失配问题.因此,氮原子掺杂的石墨烯在吸波领域有着良好的发展前景66-68.Liu et al69通过水热自组装和冷冻干燥制备了氮掺杂石墨烯泡沫.与以往的石墨烯泡沫相比,他们制备的氮掺杂石墨烯泡沫在5 wt%的低填充和3.5 mm的厚度下,RL达到-53.9 dB,有效吸收带宽高达13 GHz(图2).此外,他们的研究也解释了不同的氮掺杂类型对损耗机制的作用原理.其中,吡啶氮和吡咯氮主要影响石墨烯的偶极弛豫损耗,而石墨氮则与传导损耗相关.这一研究为理解单组分氮掺杂石墨烯的吸波机理提供了新的基点,也推动了石墨烯吸波材料的合理构造和轻质化发展.随后,他们又研究了氮掺杂量对石墨烯吸波性能的影响70.适量的氮掺杂有效地调节了衰减因子和阻抗匹配度的良好平衡,氮掺杂量为3.7 wt%的石墨烯的RL高达-55 dB,是未掺氮石墨烯的五倍.通过建立含氮量与石墨烯介电和吸波性能之间的匹配关系,将不同含氮量的石墨烯与衰减因子和阻抗匹配相结合,这一研究为石墨烯吸波材料的轻量化和便捷化提供新的途径.

图2

图2   (a) GF800,(b) NGF700⁃0.6,(c)NGF800⁃0.3,(d) NGF800⁃0.6,(e) NGF800⁃0.9和(f) NGF800⁃1.2的反射损耗曲线、匹配厚度与频率的关系图68

Fig.2   Frequency dependence of RL curves and the calculated matching thickness versus peak frequency of GF800 (a),NGF700⁃0.6 (b),NGF800⁃0.3 (c),NGF800⁃0.6 (d),NGF800⁃0.9 (e),and NGF800⁃1.2 (f) (after ref.[68])


除了氮原子,硫原子也是一种常用的碳基材料杂原子掺杂剂,并且在低温磁性材料71-72、电磁屏蔽材料73和吸波材料74-75等领域有广泛的应用.如Tan et al76制备的S⁃GS材料在1.2 mm厚度下的RL达到-52.3 dB.这为拓宽杂原子掺杂石墨烯吸波材料的发展提供了新的途径.Quan et al77合成了氮硫双掺杂石墨烯吸波材料.其中,第一步掺杂决定了材料的形貌、尺寸和吸波性能,而第二步掺杂则是对掺杂位置的进一步调整.这有助于理解不同掺杂原子之间的相互关系,为实现可控的多元素掺杂提供了新的策略.

2.2 石墨烯基二元材料

界面阻抗匹配和电磁波损耗能力决定了吸波的吸波性能.虽然对石墨烯进行杂原子掺杂、结构和形貌调整,能够改善石墨烯材料的阻抗匹配,但是磁导率过小、阻抗难匹配和损耗机制单一等问题仍然是石墨烯材料继续发展的一大难题.根据电磁吸波理论,入射电磁波能够以电导、极化弛豫和磁损耗等多种方式被衰减.因此,理想的吸波材料应具有多种的电磁损耗机制78-79.为了获得更优异的石墨烯吸波材料,研究者们对优化石墨烯基复合材料的吸波能力进行了大量研究.合理地引入其他组分,如碳纳米管、磁性金属、铁氧体和聚合物,是一种改善石墨烯基材料吸波性能的有效方法.

2.2.1 石墨烯/碳纳米材料

一维碳纳米管有着空心管状结构、大纵横比、优异的电学和力学,在电磁吸波领域有良好的发展前景80-82,但是,高导电率引起的阻抗失配特性限制了其发展.采用合理的微结构设计,制备石墨烯/碳纳米管复合材料,能够有效提升复合材料的吸波性能.将一维的碳纳米管与二维的石墨烯结合,制备三维纳米碳材料,能够有效抑制石墨烯和碳纳米管的堆叠,从而实现对电磁波的良好吸收.石墨烯/碳纳米管复合材料的设计与构造有着广泛的研究.

Qian et al83通过化学掺杂和多组分复合制备了氮掺杂的还原石墨烯@碳纳米管(N⁃rGO@CNTs)复合材料并研究了碳纳米管含量对复合材料吸波性能的影响.其中,氮原子引入的缺陷与杂原子键有助于碳纳米管在石墨烯上的锚定.实验结果表明,随着碳纳米管和还原氧化石墨烯的质量比由0增加至0.3,褶皱的氮掺杂还原氧化石墨烯与不同取向的碳纳米管相互交错,逐渐形成完善的三维导电网络体系,从而显著提高了材料内部的电子传输能力和传导损耗.巢状的碳纳米管团簇、丰富的褶皱层和穿管也有利于电磁波的多次散射(图383.2 wt%的低填充下,厚度为2.6 mm的N⁃rGO@CNTs复合材料的最小反射损耗为-49.4 dB,有效带宽为7.1 GHz.这为构造多尺度结构复合材料,获得可调谐的强吸波材料提供了新的策略.

图3

图3   N⁃rGO@CNTs复合材料的吸波机理示意图[83]

Fig.3   Schematic diagram of the EMA absorbing mechanisms of N⁃rGO@CNTs composites (after ref.[83])


Shu et al84通过水热自组装、高温煅烧制备了氮掺杂还原氧化石墨烯/多壁碳纳米管复合泡沫,并研究了氮掺杂、煅烧温度和配比对复合泡沫吸波性能的影响(图4).三维网络结构和构造与氮掺杂增强的传导损耗和极化弛豫之间的协同作用,使复合泡沫有着优异的微波吸收性能.8 wt%填料下,厚度为1.5 mm的复合泡沫的最小反射损耗为-69.6 dB,有效带宽为4.3 GHz(13.2~17.5 GHz).这为制备三维网络结构的石墨烯基复合材料提供了新的路径.

图4

图4   NRGO/MWCNT复合泡沫的合成说明[84]

Fig.4   Simplified illustration for the synthetic procedures of NRGO/MWCNT composite foams (after ref.[84])


除了构造三维网络体系,多孔结构的引入也能够有效改善阻抗匹配问题,提高石墨烯材料的电磁波衰减能力,是一种拓宽有效吸收带宽的方法85.因此,由石墨烯与多孔碳组成的复合材料有着巨大的发展前景.Mai et al86合成了三明治状的石墨烯@多介孔氮掺杂碳纳米(G/MC)材料.独特的介孔结构不仅使复合材料有着良好的阻抗匹配,而且增加了电磁波散射的路径,有利于电磁波的衰减.在5 wt%的低填充下,复合材料的最小反射损耗和有效带宽分别为-66.1 dB与8.2 GHz(图5).

图5

图5   G/C和G/MC介电常数的实部(a),虚部(b)以及介电损耗正切(c)和G/MC⁃900复合材料的吸波机理示意图(d)[86]

Fig.5   The real part (a) and imaginary part of permittivity (b) as well as the dielectric loss tangent (c) of G/C and G/MC,schematic diagram of microwave absorption mechanism of G/MC⁃900 composites (d) (after ref.[86])


石墨烯与碳纳米管的结合,增强了界面极化,但损耗单一的固有缺陷仍未得到有效解决.因此,将具有磁损耗能力的材料与石墨烯复合,是当前研究的热点.

2.2.2 石墨烯/磁性金属材料

磁性金属是一类良好的吸波材料,具有频带宽、兼容性好等优点,广泛地应用于隐身材料中87.但是,磁性金属也存在易氧化、密度大和不耐腐蚀等缺点,单一的磁损耗机制也会导致低反射损耗和窄的有效吸收带宽,不利于电磁波的衰减,难以满足目前对吸波材料“薄、轻、宽、强”的要求88.将磁性金属材料与石墨烯类材料复合,石墨烯的导电损耗机制与磁性金属的磁损耗机制能够相结合,使复合材料能够兼具两类材料的优点,具有良好的阻抗匹配特性与强电磁吸波性能.与单独的石墨烯材料相比,GA@Ni89,GF@Ni90,N⁃MGF@Co91,RGO/Co87,N⁃RGA/Ni92等的吸波性能更加优越.

Wu et al93通过调节氧化石墨烯的含量,采用一锅法得到了一系列具有不同复介电常数和阻抗匹配条件的氮掺杂、FeNi纳米颗粒均匀分布的RGO薄片材料RGO/N⁃C/FeNi(图6).这种独特、新颖的结构给石墨烯带来了多重反射和散射、界面极化和偶极极化等的协同作用,使RGO/N⁃C/FeNi复合材料有着优异的吸波性能.通过FeNi/N⁃C,FeNi/rGO和rGO/N⁃C的分级界面提供了界面极化和界面弛豫,这些界面积累了类似电容器结构的电荷,有助于增强吸波材料的介电损耗.5.44 GHz时,厚度为2.5 mm的RGO/N⁃C/FeNi⁃3材料最小反射损耗为-68.89 dB,有效带宽为5.44 GHz.

图6

图6   RGO/N⁃C/FeNi复合材料的合成路线、SEM和TEM图[93]

Fig.6   The preparation procedure of RGO/N⁃C/FeNi hybrids,SEM image and TEM image of as⁃synthesized RGO/N⁃C/FeNi hybrid (after ref.[93])


Zhao et al94通过原位溶剂热和碳化工程制备了CoNi/RGO气凝胶吸波材料.该材料有着超低密度(7 mg·cm-3)、高比表面积和高度分层多孔的结构.Co,Ni磁损耗与石墨烯的介电损耗的协同作用,使气凝胶有着优异的吸波性能,7 wt%填充率、厚度为0.8 mm的气凝胶材料,最小反射损耗与有效带宽分别为-53.3 dB和4.35 GHz.Kim et al95采用化学镀的方法制备了FeCoNi@石墨烯材料.低温的制备方式不仅有助于石墨烯的均匀分散,而且保留了FeCoNi的高磁性,从而增加了损耗能力,改善了阻抗匹配.厚度为2.3 mm的复合材料最小反射损耗可达-68 dB.

Zhu et al96通过湿化学法制备了还原氧化石墨烯/球形羰基铁复合材料RGO/CIP,厚度为

3 mm的复合材料最大反射损耗为-52.46 dB,有效带宽为4.19(7.79~11.98) GHz.随后,Yao et al97采用数字光处理3D打印技术,制备了轻质石墨烯/CIP/PMMA复合材料.厚度为2.1 mm的复合材料最大反射损耗为-54.4 dB,有效带宽为2.07 GHz.与球形CIP相比,片层状CIP具有更高的磁导率和更适合的介电常数,从而使片状CIP/RGO复合材料表现出更优异的吸波能力.

2.2.3 石墨烯/铁氧体材料

铁氧体是最早使用的一类电磁损耗材料.铁氧体吸波材料有着吸收性能优异、价格便宜等优点,但高密度、吸收带窄等缺点限制了其进一步的发展.将铁氧体材料与石墨烯类复合,能够增加复合材料的损耗机制,扩大吸收带宽,实现电磁波的高效吸收98-100.与单一组分相比,Co0.8Fe2.2O4/RGO101,Co0.33Ni0.33Mn0.33Fe2O4/GN102,MnFe2O4/RGO103,ZnFe2O4/RGO104和CoFe2O4/RGO105的吸波性能有着显著的提高.

Huang et al106通过水热、酰胺化和还原反应,合成了共价键合的RGO⁃Fe3O4复合材料(图7).复合材料不仅有效利用了介质损耗和磁损耗的协同作用,而且通过引入共价键,促进电子迁移,显著提高了材料的吸波性能.共价键是复合材料中稳定的载流子通道,促进了电子在不同组分之间迁移,从而提高电磁波的吸收性能.匹配厚度为2.1 mm时,复合材料的最小反射损耗与有效带宽分别为-48.6 dB和6.32 GHz.

图7

图7   RGO⁃Fe3O4复合材料的合成示意图[106]

Fig.7   Schematic diagram of the preparation process of RGO⁃Fe3O4 nanocomposites (after ref.[106])


Shu et al107通过水热法制备了氮掺杂还原氧化石墨烯/镍铁氧体(NRGO/NiFe2O4)复合材料.其中,水合肼的添加量与填料载量对NRGO/NiFe2O4复合材料的吸波性能有显著影响.随着填料的增加,NRGO/NiFe2O4复合材料的衰减系数α也随之增加,但高含量的填料不利于阻抗匹配,50 wt%填充负载下,NRGO/NiFe2O4复合材料的Zin/Zo更接近1,因而具有最佳的电磁吸波性能.厚度为2.2 mm的NRGO/NiFe2O4复合材料,最小反射损耗与有效带宽分别为-54.4 dB和4.5 GHz.Ding et al108通过水热法制备CuFe2O4/RGO复合材料.RGO与CuFe2O4之间存在的大量非均匀界面显著增强了界面极化,RGO中残留官能团、结构缺陷也会产生缺陷极化和偶极极化,CuFe2O4在交变磁场中也会发生涡流损耗等磁损耗,这些因素使得复合材料有着较高的反射损耗和阻抗匹配特性.在匹配频率为9.2 GHz、匹配厚度为2.56 mm的条件下,RGO添加量为20 mg的CuFe2O4/RGO⁃20材料有最小的反射损耗-58.7 dB,并且此时Zin/Zo近似1,CuFe2O4/RGO⁃20有着最佳的阻抗匹配条件.

Zhao et al109利用分子层沉积,将孔隙结构均匀的Fe2O3沉积在多孔石墨烯泡沫上,制备了PGFs⁃xPFO复合材料(图8).分子层沉积技术将PGFs和PFO膜紧密结合,改善了界面处的电荷积累与转移.与原始的石墨烯泡沫相比,厚度为2.18 mm的PGFs⁃xPFO复合材料的最小反射损耗提高了八倍,达到-64.36 dB.

图8

图8   以叔丁醇(Fe2(tBuO)6,前驱体A),乙醇胺(EA,前驱体B),丙二酰氯(MC,前驱体C)和乙醇胺(EA,前驱体B)为前驱体,采用ABCB四步法合成PGFs⁃xPFO和Fe杂化膜生长的示意图[109]

Fig.8   Schematic illustration of the synthesis procedures of PGFs⁃xPFO and the growth of Fe⁃hybrid film via four⁃step ABCB reaction sequence using tert⁃butoxide (Fe2(tBuO)6,precursor A),ethanolamine (EA,precursor B), malonyl chloride (MC,precursor C) and ethanolamine (EA,precursor B) as precursors (after ref.[109])


此外,通过构建分层纳米结构也能够使得石墨烯/铁氧体材料获得优异的吸波性能110-111.Meng et al112通过聚多巴胺黏合、乙二醇介导的方法,在石墨烯的两侧生长了四氧化三铁纳米片.在Fe3O4纳米阵列生长的同时,也对氧化石墨烯进行了还原.这种独特的3D构型和生成机制使得复合材料表现出优良的吸波性能,厚度为2.7 mm的复合材料最大反射损耗为-52.8 dB.

因此,将石墨烯与铁氧体材料复合,在改善石墨烯固有的阻抗失配难题的同时,还赋予了其磁损耗,增加了石墨烯基材料的损耗机制,使得复合材料表现出优异的吸波性能.

2.2.4 石墨烯/聚合物材料

聚合物作为基质提供了出色的热稳定性、良好的氧化和腐蚀性保护以及优异的工程性能.石墨烯/聚合物材料具有密度低、比表面积大、屏障效应好和抗渗透等优点,在电磁吸波材料领域有广泛应用113-115.Wang et al116通过原位聚合法制备了石墨烯@樟脑磺酸掺杂聚苯胺(GO@CSA⁃PANi)纳米复合材料.界面极化、缺陷弛豫和特殊的手性结构,增强了材料的极化损耗,实现了材料与自由空间的阻抗匹配.GO@CSA⁃PANi纳米复合材料在匹配厚度为2.4 mm时,具有-48.1 dB的强反射损耗和5.3 GHz的有效带宽.

Li et al117以氧化石墨烯与水溶性酚醛树脂为原料,通过化学还原和自组装等步骤制备了一系列三维石墨烯/酚醛树脂复合气凝胶(图9).酚醛树脂与氧化石墨烯之间的强亲和性有效避免了化学还原过程中还原氧化石墨烯的再堆积.通过调节石墨烯的添加量和碳化温度可以改变复合材料气凝胶的介电常数,实现阻抗匹配的电磁损耗的良好平衡.实验结果表明,厚度为2 mm的气凝胶材料,最小反射损耗与有效带宽分别为-22.7 dB和5.4 GHz.此外,轻质(24.3 mg·cm-3)、耐高温和耐腐蚀的性质,使其为制备多功能的超轻材料提供了新的途径.

图9

图9   GPFs和GPFs(T)的合成示意图[117]

Fig.9   Graphical fabrication process of GPFs and GPFs(T) (after ref.[117])


Pu et al118以聚酰亚胺为三维多孔骨架,通过两步真空浸渍,构建了具有多级阻抗梯度结构的聚酰亚胺/石墨烯复合泡沫(PI⁃GP⁃RGO).通过控制骨架的阻抗梯度能够有效调节材料的吸波性能,优化后的PI⁃GP⁃RGO在4.0 mm 厚度时,最小反射损耗与有效带宽分别为-32.87 dB和6.22 GHz.

由于锚定和协同作用,石墨烯/聚合物复合材料表现出增强的电磁吸波性能.石墨烯与聚合物之间的共价键合不仅增强了材料的稳定性,而且改变了石墨烯的电子密度,提高了石墨烯的电磁参数.共轭结构的聚合物具有的离域电子结构也赋予了石墨烯/聚合物复合材料独特的电学性能,最终也会影响到其吸波性能.因此,聚合物与石墨烯复合必定会推动石墨烯基吸波材料的发展.

2.3 石墨烯基多元材料

单组分材料难以实现界面阻抗匹配和强电磁吸收的完美结合,而对多元组分复合材料进行合理地调控能够赋予复合材料合适的阻抗匹配和强吸波能力119-120.

引入第二损耗成分如铁氧体、聚合物等构建二元复合材料能够解决石墨烯材料阻抗不匹配的问题,在此基础上,设计石墨烯基多元复合材料以实现多组分界面极化与高阻抗匹配成为了当前研究的热点121-123.

Cui et al124通过超声喷雾技术将还原氧化石墨烯、MXene和Fe3O4纳米粒子组装成褶皱的RGO/MXene/Fe3O4微球(图10).RGO和MXene相似的二维层状结构有利于不同层的重叠,形成强π⁃π相互作用.这种独特的排列方式使得微球具有与层状材料相似的等距纳米通道.实验结果表明RGO∶MXene∶Fe3O4的质量比为4∶1∶0.8的FMCM⁃3具有最优异的性能,厚度为2.9 mm的微球材料的最小反射损耗和有效吸收带宽分别为-51.2 dB和4.7 GHz.

图10

图10   FMCM的合成路线示意图[124]

Fig.10   The schematic diagram of preparation process of FMCM (after ref.[124])


Liu et al125用Fe3O4、聚(3,4⁃乙二氧噻吩)和RGO制备核壳Fe3O4@PEDOT/RGO复合材料.RGO中的缺陷与残留官能团产生的偶极极化、材料中非均相界面如Fe3O4/聚(3,4⁃乙二氧噻吩)与RGO/聚(3,4⁃乙二氧噻吩)等产生的界面极化、磁性Fe3O4微球产生的磁损耗等机制相互协同,使复合材料具备优异的电磁衰减能力.核壳Fe3O4@PEDOT/RGO复合材料在9.12 GHz处反射损耗为-48.8 dB,有效吸收带宽为4.32 GHz.

Zhang et al126将羰基铁纳米晶片通过聚丙烯酰亚胺泡沫与石墨烯薄膜进行连接制备了杂化超材料吸收体.羰基铁磁性金属的引入使材料有着较高的磁导率,有助于低频下的阻抗匹配,并衰减入射电磁功率.实验模拟表明磁性金属与石墨烯的协同作用.磁性金属和石墨烯相互偶合,使超低频率(<1 GHz)的反射损耗显著提高,同时超材料在1~18 GHz和26.5~40 GHz双频范围有着优异吸收性能.

Xu et al127通过原子层沉积法辅助原位生长制备了3D镍铝层状氢氧化物/石墨烯(NiAl⁃LDH/G)复合纳米薄片.低导电性的镍铝层状双氢氧化物的引入可以有效弥补高电导性石墨烯的缺点.通过调节镍铝层状双氢氧化物在复合材料中的含量,可以实现良好的阻抗匹配和高效微波吸收性能.界面极化损耗、传导损耗与三维多孔夹层结构的协同作用使得NiAl⁃LDH/G材料的最小反射损耗与带宽分别为-41.5 dB和4.4 GHz.此外,NiAl⁃LDH的封装效应能够有效抑制石墨烯引起的电偶腐蚀.石墨烯的防渗透性与NiAl⁃LDH的氯离子捕获能力相结合,使其具有了优异的耐腐蚀性能(图11).这一研究推动了满足涂料防腐蚀性能要求的功能性吸波材料的发展.

图11

图11   NiAl⁃LDH/G的防腐蚀机制示意图[127]

Fig.11   Schematic of the corrosion protection mechanism of NiAl⁃LDH/G (after ref.[127])


Liang et al128通过定向冻结、肼蒸气还原制备了Ni/Ti3C2T x MXene/RGO气凝胶.适量的纳米镍掺杂有效增加了气凝胶的磁损耗能力.温和的肼蒸气还原和规则的多孔结构产生良好的阻抗匹配,使更多的电磁波进入气凝胶内部而不是从表面反射.实验结果表明,在厚度为2.15 mm和0.64 wt%的低填充率下,Ni/Ti3C2T x MXene/RGO气凝胶的最小反射损耗为-75.2 dB,有效带宽为7.3 GHz.除此之外,优异的机械性能、高疏水和隔热性能,使其在高温、潮湿等恶劣环境下有着独特的优势(图12).这为制备多功能吸波材料以适应不同的操作环境提供了新的方向.

图12

图12   (a) NiMR⁃H气凝胶上水滴的图片;(b) NiMR⁃H,NiR⁃H,NiM⁃H和NiMR⁃A气凝胶的WCA图像;(c) NiMR⁃H气凝胶对各种有机液体的吸收能力(插图显示了被苏丹红Ⅲ染色的己烷的吸收过程);(d) EPS、高密度/低密度聚氨酯泡沫和NiMR气凝胶的导热率;(e)用酒精灯加热的NiMR⁃H气凝胶的红外热像和(f)测试点的温度⁃时间曲线;(g) NiMR⁃H气凝胶温度变化的有限元模拟;(h) NiMR⁃H气凝胶在20%应变下500次循环的循环压缩应力⁃应变曲线128

Fig.12   (a) Digital photo of water droplets standing on a NiMR⁃H aerogel; (b) WCA images of NiMR⁃H,NiR⁃H,NiM⁃H,and NiMR⁃A aerogels; (c) absorption capacities of the NiMR⁃H aerogel for various organic liquids (inset shows the absorption process for hexane dyed by Sudan red Ⅲ); (d) thermal conductivities of EPS,high⁃density/low⁃density PU foams,and NiMR aerogels; (e) infrared thermal image of NiMR⁃H aerogel heating by an alcohol lamp and (f) corresponding temperature⁃time curves of the test points; (g) finite element simulation of the temperature change in the NiMR⁃H aerogel; (h) cyclic compressive stress⁃strain curves of the NiMR⁃H aerogel at 20% strain for 500 cycles (after ref.[128])


由于不同组分之间的协同效应,增强了界面极化,改善了阻抗匹配,石墨烯基多组分复合材料表现出优异的吸波性能.但是,不同组分之间界面相容性差、制备工艺复杂等问题也是不容忽视的,这对实现石墨烯基多组分复合材料的大规模工业化生产仍是巨大的挑战.

3 总结与展望

良好的阻抗匹配和强电磁衰减能力一直是实现电磁吸波材料“薄、轻、宽、强”目标的核心原则.sp2杂化的六方结构,使石墨烯有着高载流子迁移率;二维层状结构和大的比表面积有利于导电网络的形成,使石墨烯有着较大的导电损耗和散射能力;残留的官能团和缺陷等能够起到活化位点的作用,不仅有利于石墨烯的修饰改性,也有利于增加弛豫损耗.除此之外,石墨烯类材料还有着低密度、抗腐蚀等优点,这些因素使得石墨烯类材料在电磁吸波领域有着独特的优势.将石墨烯与碳纳米材料、磁性金属、铁氧体和聚合物等材料复合,能够产生显著的协同与互补作用,不仅改善了石墨烯阻抗匹配能力,还引入了如磁损耗、界面极化弛豫等损耗机制.对于石墨烯复合材料来说,界面异质化程度越高,界面极化越强,复合材料的吸波性能就越好.因此,多元复合的石墨烯基材料有着更为优异的吸波性能.

近年来,石墨烯基吸波材料不断取得新的进展,然而,石墨烯基吸波材料在以下方面仍有待发展:(1)当前的合成方法中有时会使用一些有毒试剂,在实验中也会产生污染性气体,并且合成方法也存在着复杂性、合成产率低等问题,因此迫切需要开发简单、绿色、低成本的,能够进行大规模生产的合成方法.(2)石墨烯气凝胶大部分是采用水热或者化学还原制备的,这就使得无法对其孔结构进行精准控制,并且很少有研究关注单个的三维石墨烯网络与其吸波能力的关系.因此,需要进行理论基础的研究,并且研究新的方法,以实现对石墨烯气凝胶微观孔结构的准确调控.(3)当前研究很少涉及反应过程中的热力学及动力学变化,也就没办法对实验的过程、新相的生成等方面进行准确研究.因此,需要加强这方面的理论研究,从而能够更好地控制实验过程,调节材料的结构与形貌,制备吸波性能更优异的材料.(4)目前制备的石墨烯基吸波材料,多数讨论其在2~18 GHz范围内的吸收,对其他频率范围的研究较少.因此,应该扩大材料的吸波频带以便与厘米波、红外等兼容,如大部分民用无线电子设备的工作频率是0.1~6 GHz.(5)社会的发展要求吸波材料具备诸如抗腐蚀、耐热、抗寒、耐水等性能,以便适应恶劣环境下的使用,这就要求制备具有多功能性的新型吸波材料.(6)虽然实验已经证明异质结构产生的界面极化能够显著增强石墨烯基吸波材料的吸波性能,但是,关于这方面的相关机制尚未有完整的理论解释.因此,需要理论模型进行更好的指导.石墨烯基吸波材料的研究仍处于起步阶段,为了满足未来不断增长的需求,仍需要投入更多的研究.

参考文献

Jia Z, Zhang M, Liu B,et al.

Graphene foams for electromagnetic interference shielding:A review

ACS Applied Nano Materials,2020,3(7):6140-6155.

[本文引用: 1]

Wu Y, Shu R, Shan X,et al.

Facile design of cubic⁃like cerium oxide nanoparticles decorated reduced graphene oxide with enhanced microwave absorption properties

Journal of Alloys and Compounds,2020(817):152766.

[本文引用: 1]

Liu J L, Zhang L M, Wu H J,et al.

Boosted electromagnetic wave absorption performance from vacancies,defects and interfaces engineering in Co(OH)F/Zn0.76Co0.24S/Co3S4 composite

Chemical Engineering Journal,2021(411):128601.

[本文引用: 1]

Chang C, Yue X, Hao B,et al.

Direct growth of carbon nanotubes on basalt fiber for the application of electromagnetic interference shielding

Carbon,2020(167):31-39.

[本文引用: 1]

Wang M, Tang X H, Cai J H,et al.

Construction,mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding:A review

Carbon,2021(177):377-402.

[本文引用: 1]

Zhang X, Liu W, Wang H,et al.

Self⁃assembled thermosensitive luminescent nanoparticles with peptide⁃Au conjugates for cellular imaging and drug delivery

Chinese Chemical Letters,2020,31(3):859-864.

[本文引用: 1]

Liu S, Qin S, Jiang Y,et al.

Lightweight high⁃performance carbon⁃polymer nanocomposites for electromagnetic interference shielding

Composites Part A:Applied Science and Manufacturing,2021(145):106376.

[本文引用: 1]

Zhao J, Zhang J, Wang L,et al.

Superior wave⁃absorbing performances of silicone rubber composites via introducing covalently bonded SnO2@MWCNT absorbent with encapsulation structure

Composites Communications,2020(22):100486.

[本文引用: 1]

Chen H, Ma W, Huang Z,et al.

Graphene⁃based materials toward microwave and terahertz absorbing stealth technologies

Advanced Optical Materials,2019,7(8):1801318.

Hu J, Shen Y, Xu L,et al.

Facile preparation of flower⁃like MnO2/reduced graphene oxide nanocomposite and investigation of its microwave absorption performance

Chemical Physics Letters,2020(739):136953.

[本文引用: 1]

Deng J, Bai Z, Zhao B,et al.

Opportunities and challenges in microwave absorption of nickel⁃carbon composites

Physical Chemistry Chemical Physics,2021,23(37):20795-20834.

[本文引用: 1]

Liu J, Zhao Z, Zhang L.

Toward the application of electromagnetic wave absorption by two⁃dimension materials

Journal of Materials Science⁃Materials in Electronics,2021(32):25562-25576.

[本文引用: 1]

Dossumov K, Ergazieva G, Ermagambet B,et al.

Morphology and catalytic properties of cobalt⁃containing catalysts synthesized by different means

Russian Journal of Physical Chemistry A,2020,94(4):880-882.

[本文引用: 1]

Liu C, Zhang Y, Gong H,et al.

Facile fabrication of rGO/Zr4+⁃Ni2+ gradient⁃doped BaM composites for broad microwave absorption bandwidth

Ceramics International,2021,47(3):4333-4337.

[本文引用: 1]

Yao Z, Lin H, Zhou J,et al.

The effect of polymerization temperature and reaction time on microwave absorption properties of Co⁃doped ZnNi ferrite/polyaniline composites

RSC Advances,2018,8(51):29344-29355.

[本文引用: 1]

Manna R, Ghosh K, Srivastava S K.

Functionalized graphene/Nickel/Polyaniline ternary nanocomposites:Fabrication and application as electromagnetic wave absorbers

Langmuir,2021,37(24):7430-7441.

[本文引用: 1]

Sultanov F, Daulbayev C, Bakbolat B,et al.

Advances of 3D graphene and its composites in the field of microwave absorption

Advanced in Colloid and Interface Science,2020(285):102281.

[本文引用: 1]

Wang G, Ong S J H, Zhao Y,et al.

Integrated multifunctional macrostructures for electromagnetic wave absorption and shielding

Journal of Materials Chemistry A,2020,8(46):24368-24387.

Wang L, Du Z, Bai X,et al.

Constructing macroporous C/Co composites with tunable interfacial polarization toward ultra⁃broadband microwave absorption

Journal of Colloid and Interface Science,2021(591):76-84.

[本文引用: 1]

Li N, Shu R, Zhang J,et al.

Synthesis of ultralight three⁃dimensional nitrogen⁃doped reduced graphene oxide/multi⁃walled carbon nanotubes/zinc ferrite composite aerogel for highly efficient electromagnetic wave absorption

Journal of Colloid and Interface Science,2021(596):364-375.

[本文引用: 1]

Liu J L, Zhang L M, Wu H J.

Electromagnetic wave⁃absorbing performance of carbons,carbides,oxides,ferrites and sulfides:Review and perspective

Journal of Physics D:Applied Physics,2021(54):203001.

[本文引用: 1]

Novoselov K S, Geim A K, Morozov S V,et al.

Electric field effect in atomically thin carbon films

Science,2004,306(5696):666-669.

[本文引用: 1]

Farooqui U R, Ahmad A L, Hamid N A.

Graphene oxide:A promising membrane material for fuel cells

Renewable & Sustainable Energy Reviews,2018(82):714-733.

[本文引用: 1]

Iqbal M Z, Rehman A U, Siddique S.

Prospects and challenges of graphene based fuel cells

Journal of Energy Chemistry,2019(39):217-234.

Su H, Hu Y H.

Recent advances in graphene⁃based materials for fuel cell applications

Energy Science & Engineering,2021,9(7):958-983.

[本文引用: 1]

Chen Q, Zhao Y, Huang X,et al.

Three⁃dimensional graphitic carbon nitride functionalized graphene⁃based high⁃performance supercapacitors

Journal of Materials Chemistry A,2015,3(13):6761-6766.

[本文引用: 1]

Choi D, Yang E H, Gill W,et al.

Fabrication and electrochemical characterization of supercapacitor based on three⁃dimensional composite structure of graphene and a vertical array of carbon nanotubes

Journal of Composite Materials,2018,52(22):3039-3044.

Hareesh K, Shateesh B, Joshi R P,et al.

PEDOT:PSS wrapped NiFe2O4/rGO tertiary nanocomposite for the super⁃capacitor applications

Electrochimica Acta,2016(201):106-116.

[本文引用: 1]

Andronescu C, Schuhmann W.

Graphene⁃based field effect transistors as biosensors

Current Opinion in Electrochemistry,2017,3(1):11-17.

[本文引用: 1]

Chang J, Liu Y, Heo K,et al.

Direct⁃write complementary graphene field effect transistors and junctions via near⁃field electrospinning

Small,2014,10(10):1920-1925.

Svintsov D A, Vyurkov V V, Lukichev V F,et al.

Tunnel field⁃effect transistors with graphene channels

Semiconductors,2013,47(2):279-284.

[本文引用: 1]

Huang L, Zhang Z, Li Z,et al.

Multifunctional graphene sensors for Magnetic and hydrogen detection

ACS Applied Materials & Interfaces,2015,7(18):9581-9588.

[本文引用: 1]

Lv C, Hu C, Luo J,et al.

Recent advances in graphene⁃based humidity sensors

Nanomaterials,2019,9(3):9030422.

Zhao Y, Li X G, Zhou X,et al.

Review on the graphene based optical fiber chemical and biological sensors

Sensors and Actuators B⁃Chemical,2016(231):324-340.

[本文引用: 1]

Mohan V B, Lau K T, Hui D,et al.

Graphene⁃based materials and their composites:A review on production,applications and product limitations

Composites Part B:Engineering,2018(142):200-220.

[本文引用: 1]

Liu P, Zhang Y, Yan J,et al.

Synthesis of lightweight N⁃doped graphene foams with open reticular structure for high⁃efficiency electromagnetic wave absorption

Chemical Engineering Journal,2019(368):285-298.

Gunasekaran S, Thanrasu K, Manikandan A,et al.

Structural,fabrication and enhanced electromagnetic wave absorption properties of reduced graphene oxide (rGO)/zirconium substituted cobalt ferrite (Co0

.5Zr 0.5Fe2O4) nanocomposites. Physica B:Condensed Matter,2021(605):412784.

Chadha N, Saini P.

Post synthesis foaming of graphene⁃oxide/chitosan aerogel for efficient microwave absorbers via regulation of multiple reflections

Materials Research Bulletin,2021(143):111458.

Song P, Liu B, Liang C,et al.

Lightweight,flexible cellulose⁃derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities

Nano⁃micro letters,2021,13(1):1-17.

Ruan K, Guo Y, Lu C,et al.

Significant reduction of interfacial thermal resistance and phonon scattering in graphene/polyimide thermally conductive composite films for thermal management

Research,2021(2021):8438614.

Wang L, Shi X, Zhang J,et al.

Lightweight and robust rGO/sugarcane derived hybrid carbon foams with outstanding EMI shielding performance

Journal of Materials Science & Technology,2020(52):119-126.

[本文引用: 1]

Xu X, Wang G, Wan G,et al.

Magnetic Ni/graphene connected with conductive carbon nano⁃onions or nanotubes by atomic layer deposition for lightweight and low⁃frequency microwave absorption

Chemical Engineering Journal,2020(382):122980.

[本文引用: 1]

Wang L, Zhang J, Wang M,et al.

Hollow porous Fe2O3 microspheres wrapped by reduced graphene oxides with high⁃performance microwave absorption

Journal of Materials Chemistry C,2019,7(36):11167-11176.

[本文引用: 1]

Zheng H, Sun H.

Study on microwave absorbing properties of CoFeBSiNb/graphene composites

Material Sciences,2018,8(1):29-36.

[本文引用: 1]

Wu Y, Shu R, Zhang J,et al.

Oxygen vacancies regulated microwave absorption properties of reduced graphene oxide/multi⁃walled carbon nanotubes/cerium oxide ternary nanocomposite

Journal of Alloys and Compounds,2020(819):152944.

[本文引用: 1]

Wang R, He M, Zhou Y,et al.

Metal⁃organic frameworks self⁃templated cubic hollow Co/N/C@MnO2 composites for electromagnetic wave absorption

Carbon,2020(156):378-388.

[本文引用: 1]

Bai Y, Zhong B, Yu Y,et al.

Mass fabrication and superior microwave absorption property of multilayer graphene/hexagonal boron nitride nanoparticle hybrids

npj 2D Materials and Applications,2019,DOI:10.1038/s41699-019-0115-5 .

[本文引用: 1]

丁男菊牛孟霄张超智.

取代基团对太阳能电池电子受体材料石墨烯衍生物导电性的影响

南京大学学报(自然科学),2018,54(2):413-421.

[本文引用: 1]

Ding N J, Niu M X, Zhang C Z.

Effect of substituent groups at graphene derivatives used as electron acceptors of solar cells on their electroconductivity

Nanjing University (Natural Science),2018,54(2):413-421.

[本文引用: 1]

Song Q, Ye F, Kong L,et al.

Graphene and MXene nanomaterials:Toward high⁃performance electromagnetic wave absorption in gigahertz band range

Advanced Functional Materials,2020,30(31):2000475.

[本文引用: 1]

Bhattacharyya R, Kumar Singh V, Bhattacharyya S,et al.

Defect reconstructions in graphene for excellent broadband absorption properties with enhanced bandwidth

Applied Surface Science,2021(537):147840.

[本文引用: 1]

Watts C M, Liu X, Padilla W J.

Metamaterial electromagnetic wave absorbers

Advanced Materials,2012,24(23):OP98⁃OP120.

[本文引用: 1]

Landy N I, Sajuyigbe S, Mock J J,et al.

Perfect metamaterial absorber

Physical Review Letters,2008,100(20):207402.

Sun K, Wang L, Wang Z,et al.

Flexible silver nanowire/carbon fiber felt metacomposites with weakly negative permittivity behavior

Physical Chemistry Chemical Physics,2020,22(9):5114-5122.

[本文引用: 1]

Chen H, Huang Z, Huang Y,et al.

Consecutively strong absorption from gigahertz to terahertz bands of a monolithic three⁃dimensional Fe3O4/graphene material

ACS Applied Materials & Interfaces,2019,11(1):1274-1282.

[本文引用: 1]

Liu W W, Li H, Zeng Q P,et al.

Fabrication of ultralight three⁃dimensional graphene networks with strong electromagnetic wave absorption properties

Journal of Materials Chemistry A.2015,3(7):3739-3747.

Zhang Y, Huang Y, Chen H,et al.

Composition and structure control of ultralight graphene foam for high⁃performance microwave absorption

Carbon,2016,105438-447.

[本文引用: 1]

Sun X, Li Y, Huang Y,et al.

Achieving super broadband electromagnetic absorption by optimizing impedance match of RGO sponge metamaterials

Advanced Functional Materials,2021,32(5):2107508.

[本文引用: 1]

Huang X, Yu G, Zhang Y,et al.

Design of cellular structure of graphene aerogels for electromagnetic wave absorption

Chemical Engineering Journal,2021(426):131894.

[本文引用: 3]

Lv R, Terrones M.

Towards new graphene materials:Doped graphene sheets and nanoribbons

Materials Letters,2012(78):209-218.

[本文引用: 1]

Xue Y, Wu B, Bao Q,et al.

Controllable synthesis of doped graphene and its applications

Small,2014,10(15):2975-2991.

Okada T, Kalita G, Tanemura M,et al.

Role of doped nitrogen in graphene for flow⁃induced power generation

Advanced Engineering Materials,2018,20(11):1800387.

[本文引用: 1]

Li Z, Li X, Zong Y,et al.

Solvothermal synthesis of nitrogen⁃doped graphene decorated by super⁃paramagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers

Carbon,2017(115):493-502.

[本文引用: 1]

Shu R, Wan Z, Zhang J,et al.

Facile design of three⁃dimensional nitrogen⁃doped reduced graphene oxide/multiwalled carbon nanotube composite foams as lightweight and highly efficient microwave absorbers

ACS Applied Materials & Interfaces,2020,12(4):4689-4698.

[本文引用: 1]

Ma C, Shao X, Cao D.

Nitrogen⁃doped graphene nanosheets as anode materials for lithium ion batteries:A first⁃principles study

Journal of Materials Chemistry,2012,22(18):8911-8915.

[本文引用: 1]

Liu Y, Tang N, Wan X,et al.

Realization of ferromagnetic graphene oxide with high magnetization by doping graphene oxide with nitrogen

Scientific Reports,2013(3):2566.

[本文引用: 1]

Quan L, Qin F X, Estevez D,et al.

Magnetic graphene for microwave absorbing application:Towards the lightest graphene⁃based absorber

Carbon,2017(125):630-639.

[本文引用: 1]

Zhou J, Chen Y, Li H,et al.

Facile synthesis of three⁃dimensional lightweight nitrogen⁃doped graphene aerogel with excellent electromagnetic wave absorption properties

Journal of Materials Science,2017,53(6):4067-4077.

Quan L, Qin F X, Estevez D,et al.

The role of graphene oxide precursor morphology in magnetic and microwave absorption properties of nitrogen⁃doped graphene

Journal of Physics D:Applied Physics,2019(52):305001.

[本文引用: 3]

Liu P, Zhang Y, Yan J,et al.

Synthesis of lightweight N⁃doped graphene foams with open reticular structure for high⁃efficiency electromagnetic wave absorption

Chemical Engineering Journal,2019(368):285-298.

[本文引用: 1]

Ning M, Kuang B, Wang L,et al.

Correlating the gradient nitrogen doping and electromagnetic wave absorption of graphene at gigahertz

Journal of Alloys and Compounds,2021(854):157113.

[本文引用: 1]

Tucek J, Blonski P, Sofer Z,et al.

Sulfur doping induces strong ferromagnetic ordering in graphene:Effect of concentration and substitution mechanism

Advanced Materials,2016,28(25):5045-5053.

[本文引用: 1]

Hwang C, Cybart S A, Shin S J,et al.

Magnetic effects in sulfur⁃decorated graphene

Scientific Reports,2016(6):21460.

[本文引用: 1]

Shahzad F, Kumar P, Kim Y H,et al.

Biomass⁃derived thermally annealed interconnected sulfur⁃doped graphene as a shield against electromagnetic⁃interference

ACS Applied Materials & Interfaces,2016,8(14):9361-9369.

[本文引用: 1]

Lv H, Guo Y, Yang Z,et al.

Doping strategy to boost the electromagnetic wave attenuation ability of hollow carbon spheres at elevated temperatures

ACS Sustainable Chemistry & Engineering,2017,6(2):1539-1544.

[本文引用: 1]

Zhang H, Jia Z, Feng A,et al.

Enhanced microwave absorption performance of sulfur⁃doped hollow carbon microspheres with mesoporous shell as a broadband absorber

Composites Communications,2020(19):42-50.

[本文引用: 1]

Tan L, Zhu M, Li X,et al.

Lightweight excellent microwave absorption properties based on sulfur doped graphene

Journal of Saudi Chemical Society,2020,24(1):9-19.

[本文引用: 1]

Quan L, Qin F X, Lu H T,et al.

Sequencing dual dopants for an electromagnetic tunable graphene

Chemical Engineering Journal,2021(413):127421.

[本文引用: 1]

Zhao H, Cheng Y, Lv H,et al.

A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption

Carbon,2019(142):245-253.

[本文引用: 1]

Wang P, Zhang J, Wang G,et al.

Synthesis and characterization of MoS2/Fe@Fe3O4 nanocomposites exhibiting enhanced microwave absorption performance at normal and oblique incidences

Journal of Materials Science & Technology,2019,35(9):1931-1939.

[本文引用: 1]

Veksha A, Yin K, Moo J G S,et al.

Processing of flexible plastic packaging waste into pyrolysis oil and multi⁃walled carbon nanotubes for electrocatalytic oxygen reduction

Journal of Hazard Materials,2020(387):121256.

[本文引用: 1]

Wang H, Meng F, Huang F,et al.

Interface modulating CNTs@PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high⁃performance microwave absorption

ACS Applied Materials & Interfaces,2019,11(12):12142-12153.

Qiu Y, Yang H, Ma L,et al.

In situ⁃derived carbon nanotube⁃decorated nitrogen⁃doped carbon⁃coated nickel hybrids from MOF/melamine for efficient electromagnetic wave absorption

Journal of Colloid and Interface Science,2021(581):783-793.

[本文引用: 1]

Sun Z, Yan Z, Yue K,et al.

Multi⁃scale structural nitrogen⁃doped rGO@CNTs composites with ultra⁃low loading towards microwave absorption

Applied Surface Science,2021(538):147943.

[本文引用: 4]

Shu R, Wan Z, Zhang J,et al.

Facile design of three⁃dimensional nitrogen⁃doped reduced graphene oxide/multi⁃walled carbon nanotube composite foams as lightweight and highly efficient microwave absorbers

ACS Applied Materials & Interfaces,2020,12(4):4689-4698.

[本文引用: 3]

Wang L, Bai X, Zhao T,et al.

Facile synthesis of N,S⁃codoped honeycomb⁃like C/Ni3S2 composites for broadband microwave absorption with low filler mass loading

Journal of Colloid and Interface Science,2020(580):126-134.

[本文引用: 1]

Wang L, Du Z, Xiang L,et al.

The ordered mesoporous carbon coated graphene as a high⁃performance broadband microwave absorbent

Carbon,2021(179):435-444.

[本文引用: 3]

Yu Q, Nie W, Liu C,et al.

Synthesis of reduced graphene oxides with magnetic Co nanocrystals coating for electromagnetic absorption properties

Journal of Materials Science:Materials in Electronics,2020,31(24):22616-22628.

[本文引用: 2]

Meng F, Wang H,Wei,et al.

Generation of graphene⁃based aerogel microspheres for broadband and tunable high⁃performance microwave absorption by electrospinning⁃freeze drying process

Nano Research,2018,11(5):2847-2861.

[本文引用: 1]

Xu D, Yang S, Chen P,et al.

Synthesis of magnetic graphene aerogels for microwave absorption by in⁃situ pyrolysis

Carbon,2019(146):301-312.

[本文引用: 1]

Xu D W, Yang S, Chen P,et al.

3D nitrogen⁃doped porous magnetic graphene foam⁃supported Ni nanocomposites with superior microwave absorption properties

Journal of Alloys and Compounds,2019(782):600-610.

[本文引用: 1]

Xu D, Liu J, Chen P,et al.

In situ deposition of α⁃Co nanoparticles on three⁃dimensional nitrogen⁃doped porous graphene foams as microwave absorbers

Journal of Materials Science:Materials in Electronics,2019,30(14):13412-13424.

[本文引用: 1]

Tang J, Liang N, Wang L,et al.

Three⁃dimensional nitrogen⁃doped reduced graphene oxide aerogel decorated with Ni nanoparticles with tunable and unique microwave absorption

Carbon,2019(152):575-586.

[本文引用: 1]

Zhang H, Shi C, Jia Z,et al.

FeNi nanoparticles embedded reduced graphene/nitrogen⁃doped carbon composites towards the ultra⁃wideband electro⁃magnetic wave absorption

Journal of Colloid and Interface Science,2021(584):382-394.

[本文引用: 3]

Zhao H B, Cheng J B, Zhu J Y,et al.

Ultralight CoNi/rGO aerogels toward excellent microwave absorption at ultrathin thickness

Journal of Materials Chemistry C,2019,7(2):441-448.

[本文引用: 1]

Kim T, Lee J, Lee K,et al.

Magnetic and dispersible FeCoNi⁃graphene film produced without heat treatment for electromagnetic wave absorption

Chemical Engineering Journal,2019(361):1182-1189.

[本文引用: 1]

Zhu Z, Sun X, Xue H,et al.

Graphene–carbonyl iron cross⁃linked composites with excellent electro⁃magnetic wave absorption properties

Journal of Materials Chemistry C,2014,2(32):6582-6591.

[本文引用: 1]

Zuo Y, Yao Z, Lin H,et al.

Digital light processing 3D printing of graphene/carbonyl iron/polymethyl methacrylate nanocomposites for efficient microwave absorption

Composites Part B:Engineering,2019(179):107533.

[本文引用: 1]

Liu X, Huang Y, Yan J,et al.

Covalently bonded Fe3O4@SiO2⁃reduced graphene oxide nanocomposites as high⁃efficiency electromagnetic wave absorbers

Ceramics International,2020,46(4):5175-5184.

[本文引用: 1]

Gao M, Zhao Y, Wang S,et al.

Preparation of pod⁃like 3D Ni0.33Co0.67Fe2O4@rGO composites and their microwave absorbing properties

Ceramics International,2019,45(6):7188-7195.

Yin P, Deng Y, Zhang L,et al.

One⁃step hydrothermal synthesis and enhanced microwave absorption properties of Ni0.5Co0.5Fe2O4/graphene composites in low frequency band

Ceramics International,2018,44(17):20896-20905.

[本文引用: 1]

Shen W, Ren B, Cai K,et al.

Synthesis of nonstoichiometric Co0.8Fe2.2O4/reduced graphene oxide (rGO) nanocomposites and their excellent electromagnetic wave absorption property

Journal of Alloys and Compounds,2019(774):997-1008.

[本文引用: 1]

Peng J, Peng Z, Zhu Z,et al.

Achieving ultra⁃high electromagnetic wave absorption by anchoring Co0.33Ni0.33Mn0.33Fe2O4 nanoparticles on graphene sheets using microwave⁃assisted polyol method

Ceramics International,2018,44(17):21015-21026.

[本文引用: 1]

Zhang G, Shu R, Xie Y,et al.

Cubic MnFe2O4 particles decorated reduced graphene oxide with excellent microwave absorption properties

Materials Letters,2018(231):209-212.

[本文引用: 1]

Shu R, Zhang G, Zhang J,et al.

Synthesis and high⁃performance microwave absorption of reduced graphene oxide/zinc ferrite hybrid nanocomposite

Materials Letters,2018(215):229-232.

[本文引用: 1]

Liu Y, Chen Z, Zhang Y,et al.

Broadband and lightweight microwave absorber constructed by in situ growth of hierarchical CoFe2O4/reduced graphene oxide porous nanocomposites

ACS Applied Materials & Interfaces,2018,10(16):13860-13868.

[本文引用: 1]

Liu X, Huang Y, Ding L,et al.

Synthesis of covalently bonded reduced graphene oxide⁃Fe3O4 nanocomposites for efficient electromagnetic wave absorption

Journal of Materials Science & Technology,2021(72):93-103.

[本文引用: 3]

Shu R, Zhao C, Zhang J,et al.

Facile synthesis of nitrogen⁃doped reduced graphene oxide/nickel ferrite hybrid nanocomposites with superior electromagnetic wave absorption performance in the X⁃band

Journal of Colloid and Interface Science,2021(585):538-548.

[本文引用: 1]

Ding G, Chen C, Tai H,et al.

Structural characterization and microwave absorbing performance of CuFe2O4/RGO composites

Journal of Solid State Chemistry,2021(297):122051.

[本文引用: 1]

Zhao S, Yang J, Duan F,et al.

Rational construction of porous N⁃doped Fe2O3 films on porous graphene foams by molecular layer deposition for tunable microwave absorption

Journal of Colloid and Interface Science,2021(598):45-55.

[本文引用: 3]

Wang Y, Gao X, Fu Y,et al.

Enhanced microwave absorption performances of polyaniline/graphene aerogel by covalent bonding

Composites Part B:Engineering,2019(169):221-228.

[本文引用: 1]

Bel T, Muhammettursun M, Kocacinar E,et al.

Improvement of thermal stability and gamma⁃ray absorption in microwave absorbable poly(methyl methacrylate)/graphene nanoplatelets nanocomposite

Journal of Applied Polymer Science,2021,138(36):50897.

[本文引用: 1]

Zhou M, Zhang X, Wei J,et al.

Morphology⁃controlled synthesis and novel microwave absorption properties of hollow urchinlike α⁃MnO2 nano⁃structures

Journal of Physical Chemistry C,2010,115(5):1398-1402.

[本文引用: 1]

Ren Y, Zhu C, Qi L,et al.

Growth of γ⁃Fe2O3 nanosheet arrays on graphene for electromagnetic absorption applications

RSC Advances,2014,4(41):21510-21516.

[本文引用: 1]

Meng F, Wei W, Chen J,et al.

Growth of Fe3O4 nanosheet arrays on graphene by a mussel⁃inspired polydopamine adhesive for remarkable enhancement in electromagnetic absorptions

RSC Advances,2015,5(122):101121-101126.

Santhosi B, Ramji K, Rao N B R M.

Microwave absorption performance enhancement using glass fiber⁃reinforced polymer nanocomposites containing dielectric fillers in X⁃band

Polymers and Polymer Composites,2020,29(5):444-455.

[本文引用: 1]

Wang H, Ren H, Jing C,et al.

Two birds with one stone:Graphene oxide@sulfonated polyaniline nanocomposites towards high⁃performance electro⁃magnetic wave absorption and corrosion protection

Composites Science and Technology,2021(204):108630.

[本文引用: 1]

Li J, Ji H, Li A,et al.

Carbonized foams from graphene/phenolic resin composite aerogels for superior electromagnetic wave absorbers

Ceramics International,2021,47(18):26082-26091.

[本文引用: 3]

Pu L, Li S, Zhang Y,et al.

Polyimide⁃based graphene composite foams with hierarchical impedance gradient for efficient electromagnetic absorption

Journal of Materials Chemistry C,2021,9(6):2086-2094.

[本文引用: 1]

Liu J L, Zhang L M, Zang D Y,et al.

A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption

Advanced Functional Materials,2021(31):2105018.

[本文引用: 1]

Liu J L, Zhang L M J, Wu H.

Enhancing the low/middle⁃frequency electromagnetic wave absorption of metal sulfides through F- regulation engineering

Advanced Functional Materials,2021(32):2110496.

[本文引用: 1]

Xiang Z, Xiong J, Deng B,et al.

Rational design of 2D hierarchically laminated Fe3O4@nanoporous⁃carbon@rGO nanocomposites with strong magnetic coupling for excellent electromagnetic absorption applications

Journal of Materials Chemistry C,2020,8(6):2123-2134.

[本文引用: 1]

Zhang X, Zhang X, Yuan H,et al.

CoNi nanoparticles encapsulated by nitrogen⁃doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption

Chemical Engineering Journal,2020(383):123208.

Xu J, Zhang X, Yuan H,et al.

N⁃doped reduced graphene oxide aerogels containing pod⁃like N⁃doped carbon nanotubes and FeNi nanoparticles for electromagnetic wave absorption

Carbon,2020(159):357-365.

[本文引用: 1]

Cui Y, Yang K, Wang J,et al.

Preparation of pleated RGO/MXene/Fe3O4 microsphere and its absorption properties for electromagnetic wave

Carbon,2021(172):1-14.

[本文引用: 3]

Liu X, Zhao X, Yan J,et al.

Enhanced electromagnetic wave absorption performance of core⁃shell Fe3O4@poly(3,4⁃ethylenedioxythiophene) microspheres/reduced graphene oxide composite

Carbon,2021(178):273-284.

[本文引用: 1]

Zhang C, Yin S, Long C,et al.

Hybrid metamaterial absorber for ultra⁃low and dual⁃broadband absorption

Optics Express,2021,29(9):14078-14086.

[本文引用: 1]

Xu X, Shi S, Tang Y,et al.

Growth of NiAl⁃layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application

Advanced Science,2021,8(5):2002658.

[本文引用: 3]

Liang L, Li Q, Yan X,et al.

Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance

ACS Nano,2021,15(4):6622-6632.

[本文引用: 3]

/