基于密度峰值聚类和局部稀疏度的过采样算法
吕佳, 郭铭

Oversampling algorithm based on density peaks clustering and local sparsity
Lü Jia, Ming Guo
表4 各算法在Random Forest分类器上的各个指标评价结果
Table 4 Evaluation results of each index of each algorithm on the Random Forest classifier
DatasetsEvaluationSMOBorSafeADASSM⁃IPFK⁃m SADAPRSMDPCLSO
D1F1⁃measure90.6709%97.6623%92.3217%96.7532%90.8537%94.6580%95.5152%94.1239%98.5641%
G⁃mean95.2461%97.7890%95.7880%98.3726%96.3308%96.5675%97.9535%98.0415%99.1089%
D2F1⁃measure81.8589%85.6321%84.9480%83.0939%83.2347%84.6951%84.5597%85.0680%86.1102%
G⁃mean86.4057%89.7323%89.0247%87.7998%88.0274%88.6122%88.3136%89.0348%90.1449%
D3F1⁃measure92.0729%92.0027%91.9530%91.7707%89.4000%91.8976%92.2054%91.7536%92.1298%
G⁃mean93.6905%93.5232%93.3898%93.3818%91.3498%93.3722%93.5795%93.2385%93.6200%
D4F1⁃measure64.5992%62.3709%59.6078%62.7903%59.9194%61.0649%60.8345%61.5568%64.6409%
G⁃mean67.1170%64.6089%62.2487%63.8087%41.3795%62.8179%64.8092%64.5395%67.5858%
D5F1⁃measure51.7652%51.8004%54.4513%48.3501%52.3519%54.1108%53.5563%51.4006%53.6928%
G⁃mean62.8859%62.8798%65.1517%60.0904%64.0961%64.5052%64.0665%62.8836%64.5460%
D6F1⁃measure54.0671%46.8065%47.9250%42.8420%48.7296%43.0843%44.2958%47.8398%55.4072%
G⁃mean73.3234%66.3916%67.9502%65.4356%70.4429%63.9262%63.5712%67.8754%75.6030%
D7F1⁃measure85.3300%87.3711%87.7565%85.3962%80.8829%85.4548%86.1940%86.3410%89.4372%
G⁃mean88.0239%89.5964%89.5145%88.4350%84.1845%88.0619%88.4730%88.2307%90.9879%
D8F1⁃measure51.1653%48.5114%52.7296%47.0887%53.3318%49.3093%47.9999%51.1118%52.9969%
G⁃mean63.9683%61.9052%65.3732%60.5885%64.3949%62.6383%61.2848%64.2067%65.7240%
D9F1⁃measure94.1638%93.6029%93.8141%92.6962%93.3060%93.8845%93.1508%93.8321%94.5209%
G⁃mean95.9574%95.2493%95.7804%94.7729%95.3362%95.8004%95.1061%95.8240%96.3447%
D10F1⁃measure83.2339%82.3063%82.0069%82.3937%81.7358%82.0862%82.9586%83.1568%83.3381%
G⁃mean88.1863%86.9737%86.7420%87.6875%87.6375%87.4105%87.8475%88.1125%88.2262%
D11F1⁃measure77.0901%76.7172%76.9860%76.6018%79.9519%77.2552%77.2467%76.1814%78.8932%
G⁃mean78.1902%77.8985%77.8975%77.5758%79.5166%78.3964%78.4043%77.4141%80.2633%
D12F1⁃measure97.4557%97.3688%97.8214%97.3651%94.8871%97.4840%97.0970%97.8501%97.5070%
G⁃mean98.4767%98.0245%98.5630%98.3665%96.4680%98.1916%98.2208%98.4285%98.7891%
D13F1⁃measure72.5802%72.9477%72.1871%73.9721%70.0999%70.6548%75.7488%70.7328%75.0237%
G⁃mean74.0201%74.5555%74.0323%73.7829%69.1405%70.6940%76.3049%71.3652%77.3360%
D14F1⁃measure92.5700%93.3006%93.7434%94.1998%88.1873%92.2087%92.7789%92.7552%93.0408%
G⁃mean94.2282%94.5115%94.7542%95.1248%91.2529%93.0817%94.6443%94.2959%94.2480%
D15F1⁃measure68.4615%70.0000%63.6364%78.4615%53.3333%67.2727%65.7143%68.6415%70.6061%
G⁃mean74.8425%78.5644%71.3957%80.3533%60.3553%71.4435%74.7961%74.8655%75.9740%
D16F1⁃measure87.7604%86.2575%88.0239%88.8134%80.9454%85.1676%88.5639%87.0832%86.1974%
G⁃mean91.2486%89.1500%90.9489%92.2731%85.0772%88.5405%91.9600%91.1035%92.9946%
D17F1⁃measure97.4588%97.2423%97.1397%96.7293%97.1309%97.6680%97.0848%97.6840%97.7708%
G⁃mean98.0740%97.778%97.8242%97.6311%97.8802%98.0869%97.8347%98.2998%97.7063%
D18F1⁃measure97.1561%96.3506%96.6975%96.8042%96.3382%96.9671%96.6692%97.2820%97.2836%
G⁃mean97.2626%96.4719%96.8070%96.9031%96.4385%97.0726%96.7803%97.3824%97.3885%