南京大学学报(自然科学), 2021, 57(5): 881-886 doi: 10.13232/j.cnki.jnju.2021.05.020

基于SC200回旋加速器中超导磁体垂直偏移时的磁场研究

许世文2, 李君君,1, 王重2, 周健1, 丁开忠1, 陈永华2, 杜双松1

1.中国科学院等离子体物理研究所,合肥,230031

2.合肥中科离子医学技术装备有限公司,合肥,230088

Research on magnetic field of SC200 cyclotron under the vertical offset of superconducting magnet

Xu Shiwen2, Li Junjun,1, Wang Zhong2, Zhou Jian1, Ding Kaizhong1, Chen Yonghua2, Du Shuangsong1

1.Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031, China

2.Hefei CAS Ion Medical and Technical Devices Co. , Ltd, Hefei, 230088, China

通讯作者: E⁃mail:lijunjun73@ipp.ac.cn

收稿日期: 2021-01-06   网络出版日期: 2021-09-29

基金资助: 中俄超导质子加速器联合设计.  1604b0602005

Received: 2021-01-06   Online: 2021-09-29

摘要

回旋加速器中的超导磁体由于加工和安装误差会在垂直方向上存在偏移现象.该现象导致加速器内磁场偏离设计,影响束流的有效加速.目前测量超导磁体的垂直偏移主要依靠机械测量和力学传感器监控,这些方法只能在工程上确定超导磁体是否对中,而最后的对中效果仍需要通过磁场测量确认.基于中俄正在联合研制的200 MeV超导质子回旋加速器SC200,详细阐述直接利用其中平面平均径向场相对变化计算超导磁体垂直偏移的过程.对比模拟和实验的数据表明,该方法能够将主加速区中平面的平均径向场控制在±1 Gs以内,即实现了超导磁体在垂直方向上的对中,为SC200的研制奠定了扎实的基础,也为其他回旋加速器中超导磁体的位置调整提供了参考.

关键词: 回旋加速器 ; SC200 ; 超导磁体 ; 径向场

Abstract

Due to the machining and installing errors,superconducting magnet in cyclotron will generate the vertical offset,causing that the magnetic field deviates from our designation and influencing the effective acceleration of beam. Currently,the vertical offset of superconducting magnet is usually measured in engineering or monitored by mechanical sensors. These methods can only determine the alignment of superconducting magnet in engineering,and the final alignment effect needs to be confirmed by magnetic field measurements. Based on the SC200,a 200 MeV superconducting proton cyclotron being jointly developed by China and Russia,this paper describes in detail the process of calculating the vertical offset of superconducting magnets by means of directly researching the relative alterations of average radial field in cyclotron. Comparing the simulated and experimental data indicates that this method can control the averaged radial field in the median plane of main accelerated region within ±1 Gs,which means that the superconducting magnets can be aligned vertically,laying a solid foundation for the development of the SC200 cyclotron and providing a reference for positional adjustment of superconducting magnets in other cyclotrons.

Keywords: cyclotron ; SC200 ; superconducting magnet ; radial field

PDF (816KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

许世文, 李君君, 王重, 周健, 丁开忠, 陈永华, 杜双松. 基于SC200回旋加速器中超导磁体垂直偏移时的磁场研究. 南京大学学报(自然科学)[J], 2021, 57(5): 881-886 doi:10.13232/j.cnki.jnju.2021.05.020

Xu Shiwen, Li Junjun, Wang Zhong, Zhou Jian, Ding Kaizhong, Chen Yonghua, Du Shuangsong. Research on magnetic field of SC200 cyclotron under the vertical offset of superconducting magnet. Journal of nanjing University[J], 2021, 57(5): 881-886 doi:10.13232/j.cnki.jnju.2021.05.020

超导磁体与传统磁体比较能提供更高的磁场1,因而被广泛使用在回旋加速器的设计中以提高其能量并缩小其尺寸2-5.例如国外的IBA(Ion Beam Applications S.A.)6和VARIAN(Varian Medical Systems)7等,国内的中国原子能科学研究院(China Institute of Atomic Energy,CIAE)8、华中科技大学9、合肥中科离子医学技术装备有限公司10等.为了将回旋加速器制作得更紧凑,这些组织无一例外地使用了超导磁体作为设计的核心.在回旋加速器中,超导磁体和常温主磁铁共同决定了其内部的磁场.当上下超导线圈的中心对称面与中轴线分别与常温主磁铁的中心平面(或回旋加速器中平面)和中轴线重合时,称超导磁体处于对中状态.此时,中平面上磁场径向分量的平均值和谐波值最小,最利于束流在该平面附近的运动11.然而由于加工和安装误差,超导磁体会在垂直方向上偏离中平面,导致中平面磁场的轴向和径向分量不同程度地偏离我们的设计,尤其是额外产生的径向磁场分量会影响粒子的轴向震荡12-13,继而干扰束流的有效加速,因此超导磁体在垂直方向上必须被修正至对中状态,即超导磁体对称面和回旋加速器中平面重合的状态.

迄今为止,大多采用机械测量、力学传感器监测14等方法来获得超导磁体的垂直偏移状态,例如超导回旋加速器K⁃50015和超导同步回旋加速器S2C216均利用超导磁体周围拉杆上的力学传感器确认其位置状态.然而这些方法只能在机械上确定超导磁体是否对中,最后的对中效果仍需在超导磁体通电状态下通过磁场测量确认17.一些回旋加速器也利用测量磁场的方法判断超导磁体在垂直方向的偏移工况,如CIAE的CYCIAE⁃230超导回旋加速器18,然而文献19中并未详细阐述整个调整过程或展示实际调整结果.本文详细阐述了CIM研制的超导回旋加速器SC20020的磁场垫补工程开展前,直接利用中平面平均径向场的相对变化来计算超导磁体垂直方向偏移的过程.即在前期通过对SC200的磁铁设计模型进行有限元分析,模拟了其中超导磁体的不同垂直偏移工况,获得了中平面磁场的轴向和径向分量的变化规律.后期根据这些规律,在实际调整中借助磁场测量手段,经过多次迭代,最终确认该超导磁体已在垂直方向上调整至对中状态.为SC200的磁场垫补奠定了扎实的基础,也为其他回旋加速器中超导磁体的位置调整提供了参考.

1 模拟分析

1.1 中平面磁场分布

本文模拟超导磁体垂直偏移工况所用的SC200模型包含了上下铁轭、上下磁极以及超导磁体等部件.该模型的主要参数在表1中列出.图1则描绘了SC200磁体的剖面图(左)及三维图(右).同时,超导磁体不偏移时,相对于中平面分布以及内部磁场分布的简化示意图则描绘于图2中.图中代表超导磁体对称面和回旋加速器中平面的两条虚线重叠在一起.超导线圈范围内的磁场方向根据安培定律标识于图中,超导磁体中轴线上的磁场垂直于超导磁体的对称面,而中轴线周围的磁场则在对称面上下两侧向外弯曲.本文设定轴向磁场(Bz)垂直于中平面向上为正,径向磁场(Br)垂直于中轴线向外为正,如图2所示.

表1   分析模型中的主要参数

Table 1  Main parameters of the analysis model

磁极数量4
磁极径向范围3.7~61 cm
超导线圈单匝电流100 A
超导线圈匝数5320

新窗口打开| 下载CSV


图1

图1   SC200磁铁的剖面图(左)和三维图(右)

Fig.1   Profile (left) and 3⁃D model (right) of SC200 magnet


图2

图2   超导磁体不偏移时的简化示意图

Fig.2   Schematic diagram when superconducting magnet has no offset


极坐标下,以角度0.5 deg、半径1 mm的步长模拟得到了加速器机械中平面的轴向磁场和径向磁场.每个半径下的平均场通过在该半径下对角度0°~360°下的磁场求平均值获得.

对于Bz,超导磁体不偏移时,中平面的平均轴向场(Bz平均场)沿半径的分布如图3a所示.对于Br,当超导磁体处于对中状态时,由于磁铁模型上下几乎完全对称,所以中平面上磁场的径向分量几乎为0,使得中平面的平均径向场(Br平均场)理论上为0.然而在进行有限元模拟时,由于网格的不对称引入了磁场误差,产了不可忽略的Br平均场,如图3b所示.故分析超导磁体垂直偏移时,需要将不偏移时的Br平均场作为基准值,垂直偏移时得到的Br平均场需要减去这个基准值再进行各种分析.

图3

图3   超导磁体不偏移时,Bz平均场(a)和Br平均场(b)沿半径的分布

Fig.3   Distributions of Bz average (a) and Br average (b) along the radius without the offset of superconducting magnet


1.2 超导磁体垂直偏移模拟

超导磁体的垂直偏移指上下两个平行的超导线圈在轴向上均朝同一个方向移动,此时两个超导线圈的对称平面仍与回旋加速器的中平面平行,超导磁体的中轴线和回旋加速器的中轴线重合,其简化示意图如图4所示.

图4

图4   超导磁体垂直向上偏移时的简化示意图

Fig.4   Schematic diagram when superconducting magnet moves upward vertically


垂直偏移的模型设定超导磁体向上偏移0.2,0.5,1 mm以及向下偏移0.2 mm(或简写为D=0.2,0.5,1,-0.2 mm).对中平面(Z=0 mm)的Bz和Br进行分析.图5呈现了在超导磁体不偏移时的Bz平均值基础上,超导磁体不同垂直偏移量时的Bz平均值变化.可以看出,半径61 cm范围内,这个量小于±0.2 Gs,考虑到实际磁场测量情况,可认为无法识别.

图5

图5   超导磁体不同垂直偏移量时的Bz平均值相对于不偏移时Bz平均值的变化

Fig.5   Variation of Bz average under different vertical offset values of superconducting magnet comparing with Bz average under no offset


尽管垂直偏移时,Bz平均场几乎不产生变化,但是Br平均场产生了可识别的变化,如图6a所示.图中,Br平均场均随着半径增大,并在半径54 cm处达到最高点后开始下降.图6b则显示,将D=0.5 mm产生的Br平均值除以D=0.2 mm产生的Br平均值,两种半径下结果均为2.5,正好等于垂直偏移量的比值,即0.5 mm∶0.2 mm=2.5∶1;同样地,将D=1 mm产生的Br平均值除以D=0.2 mm产生的Br平均值,两种半径下结果均为5,正好等于垂直偏移量的比值,即1 mm∶0.2 mm=5∶1.这说明各垂直偏移量下,Br平均场随半径变化的趋势相同,且各Br平均值与超导磁体垂直偏移量成正比关系.图6a也显示出,D=0.2和-0.2 mm时,Br平均值在两种半径下大小相同符号相反,超导磁体向下偏移(D=0.2 mm)时Br平均值为正,向上偏移时Br平均值为负.

图6

图6   (a)超导磁体不同垂直偏移量时产生的Br平均值;(b)超导磁体垂直偏移1 mm及0.5 mm产生的Br平均值与垂直偏移0.2 mm产生的Br平均值的比值

Fig.6   (a) Br average produced under different vertical offsets of superconducting magnet,(b) ratio of Br average under D=0.5 and 1mm to that under D=0.2 mm


这种现象可以用图4解释,无论超导磁体上偏还是下偏,由于超导磁体的中轴线和回旋加速器的中轴线重合,因此中平面同一半径下中心对称两点的Br大小相同方向相反,Bz则大小相同方向相同.当超导磁体向上偏移时,中平面在对称面的下方,因此中平面上中轴线周围的磁场向内弯曲,产生了指向中轴线的Br分量,即Br为负;当超导磁体向下偏移时,中平面在对称面的上方,因此中平面上中轴线周围的磁场向外弯曲,产生了远离中轴线的Br分量,即Br为正.因此实际测量中,超导磁体的垂直偏移量和偏移方向即可用磁场测量时得到的中平面的Br平均场的大小和正负初步估算.

2 模拟与实验对比

2019年,在SC200的磁场垫补工程开展之前,我们借助本公司自主研发的圆柱面Br磁测系统21对回旋加速器中平面的磁场展开测量,在超导线圈单匝电流100 A下获得了中平面各个半径下的Br平均值.参照超导磁体垂直偏移时得到的中平面Br平均场的线性模拟结果,初步确定了超导磁体的垂直偏移量.之后通过调整超导磁体上下的八根拉杆,如图7所示,确定了一个略大于判断量的调整量进行实际调整.调整后再通过磁场测量确定中平面各半径下的Br平均值.迭代上述过程,直至主加速区范围内(径向10~55 cm)中平面各半径下的Br平均值均在±1 Gs以内.

图7

图7   超导磁体四周拉杆模型图

Fig.7   Model graph of support links around the superconducting magnet


实际操作只迭代两次,就完成了超导磁体垂直偏移的调整.第一次调整超导磁体前和最后一次调整超导磁体后测得的Br平均值沿半径的分布分别如图8a中的实线和虚线所示,可以看出通过该方法调整超导磁体,可以使主加速区范围内中平面的Br平均值调整至±1 Gs以内.另外,从第一次调整到最后一次调整,机械测量确认超导磁体在垂直方向被下移0.12 mm.此过程中,实际测量所得的Br平均值变化如图8b中的实线所示,而模拟超导磁体垂直向下移动0.15 mm产生的Br平均值则如图8b中的虚线所示.可以看出在主加速区,模拟值和实测值产生的误差为0.03 mm,控制在0.1 mm以内,同时也证明了该方法判断出的超导磁体垂直偏移方向正确.

图8

图8   (a)第一次调整超导磁体前和最后一次调整超导磁体后分别测得的各半径Br平均值;(b)在同样的垂直偏移量下,实际测量的Br平均值变化与模拟所得Br平均值的对比

Fig.8   (a) Br average at each radius respectively measured before the first adjustment and after the last adjustment of superconducting magnet,(b) under the same vertical offset values,actual measured change of Br average vs. change of simulated Br average


3 结 论

本文基于SC200研究了回旋加速器中超导磁体在垂直偏移工况下中平面磁场的变化.研究得出垂直偏移的大小可通过Br平均值的改变量来估测,为正则超导磁体向上偏移,反之向下偏移.实际情况中可利用磁场测量系统测量出中平面的Br分量,再经过以上分析即可初步快速判断超导磁体在垂直方向上的偏移.然而由于超导磁体还存在偏离加速器中轴线的水平偏移以及围绕加速器中心旋转的倾斜等其他复杂情况,磁场测量数据也存在一定误差,因此在条件允许的情况下,实际使用该方法时最好配合超导磁体受力情况综合判断磁体的偏移.

参考文献

Blosser H.

30 years of superconducting cyclotron technology

Proceedings of 17th International Conference on Cyclotrons and Their Applications. Tokyo,Japan,SaitamaSaitama University,2005531-536.

[本文引用: 1]

Karamysheva O,Karamysheva G A,Gurskiy Set al.

Conceptual design of the SC230 superconducting cyclotron for proton therapy

Proceedings of 10th International Particle Accelerator Conference. Melbourne,Australia,Geneva,SwitzerlandJACoW,20192058-2060.

[本文引用: 1]

Yamamoto A.

The future of superconducting technology for accelerators

Proceedings of 8th International Particle Accelerator Conference. Copenhagen,Denmark,Geneva,SwitzerlandJACoW,201719-23.

Geisler A,Baumgarten C,Hobl Aet al.

Status report of the accel 250 mev medical cyclotron

Proceedings of the 17th International Conference on Cyclotrons and Their Applications. Tokyo,Japan, SaitamaSaitama University,2005178-182.

Krischel D,Baumgarten C,Geisler Aet al.

Design aspects and operation experience with a novel superconducting cyclotron for cancer treatment

IEEE transactions on applied superconductivity,2007,17(2):2307-2310.

[本文引用: 1]

Karamysheva G,Kostromin S.

Beam dynamics study in the C235 cyclotron for proton therapy

Physics of Particles and Nuclei Letters,2009,6(1):84-90.

[本文引用: 1]

Röcken H,Abdel⁃Bary M,Akcöltekin Eet al.

Progress at VARIAN's superconducting cyclotrons:A base for the probeamTM platform

Proceedings of the 20th International Conference on Cyclotrons and their Applications. Vancouver,Canada,Geneva,SwitzerlandJACoW,201355-57.

[本文引用: 1]

Zhang T,Wang C,Li Met al.

Developments for 230 MeV superconducting cyclotrons for proton therapy and proton irradiation

Nuclear Instruments and Methods in Physics Research Section B,2017,406(A):244-249.

[本文引用: 1]

Hu S,Fan K,Zhang Let al.

Beam loss issue study on the extraction system of a superconducting cyclotron at HUST

Nuclear Instruments and Methods in Physics Research Section A,2018(911):87-93.

[本文引用: 1]

Ding KBi Y,Chen Get al.

Study of the beam extraction from superconducting cyclotron SC200∥Proceedings of the 21st International Conference on Cyclotrons and their Applications

Zurich,Switzerland,Geneva,Switzerland:JACoW,201687-90.

[本文引用: 1]

Kim J W.

Effects of vertical misalingment of superconducting coils in cyclotrons

Proceedings of the 16th International Conference on Cyclotrons and Their Applications. East Lansing,MI,USA,New YorkAIP,2001405-407.

[本文引用: 1]

Samsonov E,Kostromin S,Morozov N,et al.

Beam dynamics simulations in cyclotron C230 considering imperfections of magnetic field radial component

Proceedings of the 5th International Particle Accelerator Conference. Dresden,Germany,Geneva,SwitzerlandJACoW,20143038-3040.

[本文引用: 1]

Zhang T.

Lu Y,Zhong J,

et al. Design,construction,insrtallati,mapping,and shimming for a 416⁃ton compact cyclotron magnet. IEEE Transactions on Applied Superconductivity,2016,26(4):1-5.

[本文引用: 1]

Artoos K,Gerardin A,Guinchard M,et al.

New techniques for mechanical measurements in the superconducting magnet models

Proceedings of 1st International Particle Accelerator Conference. Kyoto,Japan,Geneva,Switzerland:JACoW,2010370-372.

[本文引用: 1]

Bhandari K R,Sinha B,

Commissioning of the main magnet of kolkata K⁃500 superconducting cyclotron

Proceedings of 2005 Particle Accelerator Conference. Knoxville,TN,USA,Geneva,SwitzerlandJACoW,20052765-2767.

[本文引用: 1]

Kleeven W,Abs M,Forton E,et al.

The IBA superconducting synchrocyclotron project S2C2∥Proceedings of the 20th International Conference on Cyclotrons and their Applications

Vancouver,Canada,Geneva,Switzerland:JACoW,2013115-119.

[本文引用: 1]

Dey M K,Dutta Gupta A,Debnath J,et al.

Coil centering of the kolkata superconducting cyclotron magnet

Proceedings of the 18th International Conference on Cyclotrons and Their Applications. Giardini Naxos,Italy,Geneva,SwitzerlandJACoW,2007438-440.

[本文引用: 1]

Zhang T,Wang C,Cui T,et al.

Design and construction of the main magnet for a 230 MeV superconducting cyclotron

IEEE Transactions on Applied Superconductivity,2018,28(3):1-5.

[本文引用: 1]

Kleeven W.

Methods for adjusting the position of a main coil in a cyclotron

European Patent2811813B1,2016⁃01⁃06.

[本文引用: 1]

Karamysheva G,Karamyshev O,Morozov N,et al.

Computer modeling of magnet for SC200 superoconducting cyclotron

Proceedings of the 7th International Particle Accelerator Conference. Busan,Korea,Geneva,SwitzerlandJACoW,20161265-1267.

[本文引用: 1]

Xu M,Song Y,Chen Get al.

Design and commissioning of Brav measurement system for SC200 superconducting cyclotron

Nuclear Science and Techniques,2019,30(6):93.

[本文引用: 1]

/