基于深度主动学习的甲状腺癌病理图像分类方法
|
张萌, 韩冰, 王哲, 尤富生, 李浩然
|
Papillary thyroid carcinoma pathological image classification based on deep active learning
|
Meng Zhang, Bing Han, Zhe Wang, Fusheng You, Haoran Li
|
|
表1 不同标注比例的分类结果(∶)
|
Table 1 Classification results with different ratio for
|
|
| 1% | 5% | 10% | 20% | 30% | 40% | 50% |
---|
0∶10 | 0.822 | 0.834 | 0.887 | 0.894 | 0.905 | 0.904 | 0.912 | 1∶9 | 0.862 | 0.879 | 0.893 | 0.898 | 0.914 | 0.918 | 0.919 | 2∶8 | 0.821 | 0.859 | 0.882 | 0.891 | 0.904 | 0.913 | 0.912 | 3∶7 | 0.830 | 0.849 | 0.856 | 0.859 | 0.899 | 0.914 | 0.914 | 4∶6 | 0.859 | 0.860 | 0.892 | 0.901 | 0.904 | 0.907 | 0.908 | 5∶5 | 0.831 | 0.840 | 0.868 | 0.879 | 0.888 | 0.905 | 0.907 | 6∶4 | 0.832 | 0.825 | 0.860 | 0.865 | 0.904 | 0.908 | 0.915 | 7∶3 | 0.833 | 0.844 | 0.843 | 0.899 | 0.890 | 0.898 | 0.911 | 8∶2 | 0.840 | 0.851 | 0.879 | 0.886 | 0.906 | 0.908 | 0.913 | 9∶1 | 0.835 | 0.840 | 0.863 | 0.893 | 0.900 | 0.912 | 0.916 | 10∶0 | 0.835 | 0.837 | 0.845 | 0.852 | 0.866 | 0.902 | 0.917 |
|
|
|