南京大学学报(自然科学版), 2019, 55(4): 678-687 doi: 10.13232/j.cnki.jnju.2019.04.018

典型岩溶地质高背景土壤镉生物有效性及其控制因素研究

郭超,1, 文宇博1, 杨忠芳2, 李伟1, 管冬兴1, 季峻峰1

1. 表生地球化学教育部重点实验室,南京大学地球科学与工程学院,南京,210023

2. 中国地质大学地球科学与资源学院,北京,100083

Factors controlling the bioavailability of soil cadmium in typical karst areas with high geogenic background

Guo Chao,1, Wen Yubo1, Yang Zhongfang2, Li Wei1, Guan Dongxing1, Ji Junfeng1

1. Key laboratory of Surficial Geochemistry Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China

2. School of Earth Sciences and Resources,China University of Geosciences, Beijing, 100083, China

通讯作者: E⁃mail:g_chaos@163.com

收稿日期: 2019-06-13   网络出版日期: 2019-07-17

基金资助: 国家重点研发计划.  2017YFD0800303
西南典型岩溶地区多目标地球化学调查.  12120114092001

Received: 2019-06-13   Online: 2019-07-17

摘要

我国岩溶地貌主要分布在广西、贵州、云南等西南地区,全国土壤污染状况调查公报显示这些岩溶区土壤中金属元素通常超标严重,其生物有效性的相关研究仍较缺乏.采集广西典型岩溶重金属地质高背景地区的稻田土壤,分析金属元素As,Cd,Cr,Cu,Ni,Pb和Zn总量,并采用CaCl2和EDTA(Ethylene Diamine Tetraacetic Acid)提取方法分析土壤中金属的生物有效态含量.结果表明,与上部地壳相比,研究区土壤中不同重金属的富集程度顺序为Cd>As>Pb>Zn>Cr>Cu>Ni,与广西灰岩中这些重金属的富集程度顺序基本一致,揭示岩溶区地质高背景土壤重金属的富集具有显著的母岩继承性.土壤Cd的CaCl2提取的平均含量为0.02 mg·kg-1,平均提取率为4.37%,远低于人为污染区土壤Cd的CaCl2提取的平均含量和提取率.EDTA提取态Cd的含量平均值为0.84 mg·kg-1,平均提取率为52.86%.岩溶区土壤Cd的CaCl2提取态含量与土壤Cd总量没有明显的线性关系,生物有效性和生态风险主要受pH控制:当土壤pH>6.5时,虽然土壤Cd总量较高,但CaCl2提取态Cd含量偏低,生态风险低;而当土壤pH<6.5,土壤Cd总量相对偏低时,CaCl2提取态Cd含量较高,生态风险较高.

关键词: 地质高背景 ; 岩溶区土壤 ; ; CaCl2提取 ; 生物有效性

Abstract

China's karst landforms are mainly distributed in Guangxi,Guizhou,Yunnan provinces and other southwest regions. According to the national soil pollution survey bulletin,the concentrations of metal elements in soils of these karst areas usually exceed the national standard,and the relevant research on the metal bioavailability is still lacking. The total concentrations of metals (As,Cd,Cr,Cu,Ni,Pb and Zn) in the paddy soils from typical karst areas in Guangxi were analyzed,and the chemical bioavailable concentrations of these metals in the soils were analyzed by using the chemical extraction methods of CaCl2 and EDTA(Ethylene Diamine Tetraacetic Acid). The Results showed that compared with that in the upper crust,different degree of enrichment of heavy metals in soils from the study area in order for the Cd>As>Pb>Zn>Cr>Cu>Ni,which is basically consistent with the order of concentrations of these heavy metals in Guangxi limestones,it is revealed that heavy metals in the soils from geogenic background karst area has significant inheritance from the parent rock. The average concentration of CaCl2 extracted from soil Cd in the karst areas was 0.02 mg·kg-1,and the average extraction rate was 4.37%,far lower than the average concentration and the average extraction rate for soil Cd in anthropogenic contaminated areas.The average concentration of EDTA extracted Cd was 0.84 mg·kg-1,and the extraction rate was 52.86%. The study found that there was no significant linear relationship between the concentration of CaCl2 extracted Cd and the total concentration of soil Cd in karst areas. The bioavailability and ecological risk were mainly controlled by pH. When the soil pH was higher than 6.5,although the total concentration of soil Cd was high,the concentration of CaCl2 extracted Cd and the ecological risk were low. However,when the soil pH was lower than 6.5 and the total concentration of soil Cd was relatively low,the concentration of CaCl2 extracted Cd and the ecological risk were higher.

Keywords: high geogenic background ; karst soil ; cadmium ; CaCl2 extraction ; bioavailability

PDF (1264KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

郭超, 文宇博, 杨忠芳, 李伟, 管冬兴, 季峻峰. 典型岩溶地质高背景土壤镉生物有效性及其控制因素研究. 南京大学学报(自然科学版)[J], 2019, 55(4): 678-687 doi:10.13232/j.cnki.jnju.2019.04.018

Guo Chao, Wen Yubo, Yang Zhongfang, Li Wei, Guan Dongxing, Ji Junfeng. Factors controlling the bioavailability of soil cadmium in typical karst areas with high geogenic background. Journal of nanjing University(Natural Science)[J], 2019, 55(4): 678-687 doi:10.13232/j.cnki.jnju.2019.04.018

全球碳酸盐岩的分布面积占据了陆地面积的12%,我国是世界上岩溶面积最大的国家,总面积达到344.3×104 km2,占世界岩溶面积的64%[1,2].广西是我国最大的岩溶省区之一,其碳酸盐岩分布面积9.87×104 km2,占全区总面积的41.57%[3].研究表明发育于我国碳酸盐区的土壤与下伏基岩在矿物学和微量元素方面具有继承性的演化关系[4],灰岩风化土壤中重金属含量往往异常富集,严重超标[5—7].这是因为在风化和成土过程中,钙、镁等成分溶于水而淋失,不溶的粘土性风化物残留下来,许多元素在此过程中相对地浓缩[8].2015年《中国耕地地球化学调查报告》显示,我国土壤重金属的超标与地质成因关系密切,西南岩溶区土壤重金属超标主要与地质高背景和成土过程有关[9].这类地质高背景土壤重金属的污染生态风险如何仍不清楚.

重金属化学形态及其在土壤中的分配是影响土壤-植物系统中重金属的归趋和生物有效性的关键因素[10].目前评估土壤重金属生物有效性的方法之一就是化学提取法,即利用特定的化学试剂提取出活动态或潜在活动态的元素.对土壤重金属的生物有效性研究表明,0.01 mol·L-1的CaCl2提取法和0.05 mol·L-1 EDTA提取法能有效预测作物中的重金属含量[11—12].此前有部分研究关注于岩溶区地质高背景土壤中重金属的富集,但对其土壤中重金属的生物有效性及控制因素的研究相对缺乏,土壤重金属的生物有效性研究可以为土壤污染生态风险评价和污染土壤的修复提供理论依据和技术手段.选择广西典型地质高背景岩溶区的土壤样品,采用目前广泛使用的CaCl2及EDTA提取方法分析土壤中镉的生物有效态含量及其影响因素,并将其与人类活动污染(矿业及工业)区土壤镉的生物有效性进行了对比.

1 材料与方法

1.1 研究区概况

由《中国地球化学图集》[13],西南岩溶地区的水系沉积物中镉含量较高,在镉含量最高(>3 mg·kg-1)的碳酸盐岩区均匀布设了53个农田土壤采样点(图1).采样点位于中国广西壮族自治区河池市和来宾市.河池市位于广西西北边陲,属亚热带季风气候区,是广西岩溶地貌出露面积最大的城市;来宾市位居广西壮族自治区中部,地处中亚热带向南亚热带过渡的季风气候区.研究区出露地层包括石炭系(马平组、黄龙组)、泥盆系(郁江组、那高岭组)、二叠系(茅口组、栖霞组)、三叠系(板纳组、北泗组、南洪组、罗楼组).研究区土壤类型包括水稻土、赤红壤、红壤、硅质土、石灰岩土等五个土类,采样点土壤主要以石灰土为主.

图1

图1   研究区采样点位分布图[13—14]

Fig.1   Sampling location of the study area[13—14]


1.2 样品处理及分析

表层土壤样品的采集按照中国地质调查局实施的土地质量地球化学评价规范(DZ/T 0295⁃2016)[15]技术要求执行,每个样品均与至少四个0~20 cm表层土壤子样品混合均匀组成一个点的土壤样.土壤样品经过自然风干后,用橡胶锤碾碎,过2 mm尼龙筛后装入自封袋保存.常量元素的分析方法如下:用X射线荧光光谱仪(XRF)测定Al2O3,SiO2,Ti,TFe2O3等;用HCl,HNO3,HF,HClO4分解后经处理,用电感耦合等离子体光谱仪(ICP⁃AES)测定Na2O,MgO,K2O,CaO,Mn;用电感耦合等离子体质谱仪(ICP⁃MS)测定Cd,Cr,Cu,Ni,Pb,Zn;用原子荧光光谱法(AFS)测定As,Hg,Se;采用国家标准物质以及重复样的测试进行质量监控,各类指标分析的准确度(ΔlgC)为0.10~0.12,精密度(RSD)为10%~20%.

分别用CaCl2提取法和EDTA提取法[11,12]测定土壤样品中重金属的有效态浓度.将2 g干重的土壤放入50 mL塑料离心管中分别加入20 mL 0.01 mol·L-1 CaCl2溶液和20 mL 0.05 mol·L-1 EDTA (浓氨水中和至pH=7.0)溶液,在室温下震荡2 h(140 r·min-1)后离心5 min(5000 r·min-1),抽取上清液过0.45 μm微孔滤膜,用超纯HNO3酸化后利用ICP–MS分析溶液中金属元素含量.每个样品均设置三个重复.标准土壤样品GBW07416a(ASA–5a),GBW07460(ASA–9),GBW07444(GSF–4)用于验证提取态中的元素浓度测试质量.重复样的标准偏差小于10%.

1.3 数据分析

样点分布图采用ArcGIS 10.5软件绘制,数据描述性统计,多元统计包括逐步多元线性回归和皮尔森相关性分析等利用SPSS 23.0完成,图形绘制由Sigmaplot 12.5及Excel 2016完成.

2 结果与讨论

2.1 研究区土壤重金属含量特征

研究区土壤常量和微量元素及其他指标的含量见表1.土壤中常量元素明显富集CaO,其平均值是全国土壤背景值的1.48倍.TiO2,TFe2O3,MgO,Na2O,K2O则相对于全国土壤背景值及地壳丰度亏损.土壤中重金属元素As,Cd,Cr,Cu,Hg,Ni,Pb,Se和Zn的平均含量分别为14.27,1.78,160.39,33.82,0.62,32.05,30.30,0.61和112.51 mg·kg-1,均高于上地壳对应元素丰度值及中国土壤背景值,其平均值分别是全国土壤背景值的1.27,18.36,2.63,1.50,9.52,1.13,1.23,2.09和1.52倍.根据最新的土壤环境质量农用地土壤污染风险管控标准(GB15618⁃2018)[18],研究区Cd超标严重,79.2%的土壤中Cd含量超过土壤污染风险筛选值,有18.9%的土壤中Cd含量超过土壤污染风险管控值.As,Cr,Hg,Zn分别有5.66%,7.55%,1.89%,1.89%的样品超过土壤污染风险筛选值,其中Hg和Cr分别有一个样品含量超过管控值.Cu,Ni,Pb均不超标.研究区土壤Cd的富集应重点关注.

表1   研究区土壤基本理化性质(n=53)

Table 1  The physicochemical properties of soils in the study area(n=53)

项目最小值最大值平均值标准差变异系数全国土壤背景值[16]地壳丰度[17]富集系数
SiO2 (%)27.1286.1666.6113.30.266.62
TiO2 (%)0.10.960.40.170.420.510.640.8
Al2O3 (%)5.4322.2812.623.120.2512.515.41.01
TFe2O3 (%)1.2912.645.092.040.44.25.6*1.21
MgO (%)0.271.210.560.190.351.32.480.43
CaO (%)0.2923.53.195.981.872.163.591.48
Na2O (%)0.070.530.170.10.621.373.270.12
K2O (%)0.142.271.130.60.532.232.80.5
As (mg·kg-1)2.5556.1514.279.980.711.24.81.27
Cd (mg·kg-1)0.177.691.782.031.140.0970.0918.36
Cr (mg·kg-1)50.21442.7160.39198.111.2461922.63
Cu (mg·kg-1)1559.133.829.650.2922.6281.5
Hg (mg·kg-1)0.0622.50.623.044.90.0650.059.52
Mn (mg·kg-1)71.6966.5292.43218.970.75583774.60.5
Ni (mg·kg-1)15.56430.311.980.426.9471.13
Pb (mg·kg-1)19.674.332.0511.840.3726171.23
Se (mg·kg-1)0.221.530.610.280.470.290.092.09
Zn (mg·kg-1)58.4250.8112.5149.660.4474.2671.52
有机质 (%)2.546.954.711.030.223.1
pH5.28.026.660.960.146.7
CEC (cmol(+)/kg)5.4716.4811.042.560.23
CaCl2⁃Cd (mg·kg-1)00.380.040.061.63
EDTA⁃Cd (mg·kg-1)0.083.210.840.810.95

enrichment coefficient: average of elements /national soil background value

* represents the value calculated by the TFeO transformation

新窗口打开| 下载CSV


与上部地壳相比,研究区土壤中Cd,As,Pb,Zn,Cr,Cu,Ni的平均值分别富集19.78,2.97,1.89,1.74,1.68,1.21和0.64倍.广西碳酸盐岩[19] 中Cd,As,Pb,Zn,Cr,Cu,Ni的平均值分别为0.25,1.86,4.97,13.56,11.88,5.30和6.34 mg·kg-1,与上部地壳相比分别富集2.79,0.39,0.29,0.20,0.13,0.19和0.13倍.广西灰岩与土壤中不同重金属的富集程度顺序基本一致(图2图3),其中Cd的富集程度高于其他重金属,这可能解释了为何广西岩溶区土壤Cd的含量超标严重,而其他元素超标程度低或不超标.

图2

图2   广西碳酸盐岩[19]及研究区土壤重金属相比上部地壳的富集系数

Fig.2   Enrichment coefficient of heavy metals in Guangxi carbonate rocks[19] and soils in the study area compared with the upper crust


图3

图3   广西碳酸盐岩[19]及研究区土壤重金属的富集系数相关关系图

Fig.3   The correlation diagram of enrichment coefficient of heavy metals in Guangxi carbonate rocks[19] and soils in the study area


土壤Cd含量与土壤理化性质及元素含量的Pearson相关系数见表2.土壤中的Cd与常量元素密切相关,其中与CaO呈显著正相关,相关系数高达0.833(p<0.01),与Na2O,SiO2,K2O呈显著负相关(p<0.05),说明研究区土壤中Cd随着碳酸钙含量升高而增加.土壤Cd与pH呈显著正相关(p<0.01,R2=0.567),Cd含量高的土壤pH偏碱性.土壤Cd与其他重金属元素Cr,Ni,Zn,Pb,As具有显著正相关性,这说明土壤中Cd与这些重金属元素伴生存在. Quezada–Hinojosa et al[20]研究发现瑞士侏罗纪灰岩风化的土壤中除Cd含量超标外,Zn,Pb,Cr含量也异常富集.Biasioli et al[21]研究发现碳酸盐岩风化土壤中Cr,Ni,Co之间有密切的关系,证明它们来自共同的岩石母质.在岩石风化成土过程中这些重金属共同富集.

表2   土壤重金属生物有效性与土壤性质和元素含量的相关系数

Table 2  Correlation coefficients of bioavailable concentrations of heavy metals with soil properties and elements concentrations in soils

Soil⁃CdCaCl2⁃CdCaCl2提取率EDTA⁃CdEDTA提取率
Na2O-0.373**0.1850.368**-0.381**0.115
MgO0.116-0.316-0.3250.066-0.187
Al2O3-0.043-0.065-0.018-0.080-0.091
SiO2-0.711**0.2640.364**-0.593**0.568**
K2O-0.599**0.1670.344-0.587**0.398**
CaO0.833**-0.242-0.360**0.722**-0.555**
TFe2O30.246-0.237-0.3000.177-0.389**
Mn0.175-0.258-0.425**0.241-0.034
Cd1.000-0.149-0.393**0.962**-0.476**
Corg0.327-0.070-0.2230.3200.041
pH0.567**-0.581**-0.855**0.568**-0.274
CEC-0.094-0.109-0.117-0.0520.227

** indicates a significant correlation at 0.01 level(two⁃sided test)

新窗口打开| 下载CSV


2.2 土壤镉的生物有效性

对研究区土壤进行金属元素的CaCl2及EDTA提取态分析(图4),岩溶区土壤CaCl2提取态Cd含量平均值为0.04 mg·kg-1,相比人为污染(工业及矿业)地区土壤,岩溶区土壤CaCl2提取态Cd含量平均值较低(图4).例如在陈俊等[22]研究中北京新河区工业污灌区地区交换态Cd含量为0.35 mg·kg-1;Li et al[23]研究中江苏宜丰等地工厂污染区域CaCl2提取态Cd含量为0.15 mg·kg-1,王志楼[24]研究中江西德兴铜矿区土壤Cd可交换态含量平均值为0.76 mg·kg-1.

图4

图4   研究区土壤Cd总量与提取态Cd含量相关图

Fig.4   The correlation diagram of total concentration of Cd and extracted Cd concentration in soils from the study area


CaCl2溶液属于中性盐溶液,它主要提取溶解态和离子交换态,这是最具生物有效性的组分[25—26].因此研究区土壤CaCl2提取态Cd含量低说明Cd的生物可直接利用态含量较低.土壤CaCl2提取态Cd与土壤Cd总量则没有明显的线性关系,当土壤Cd总量较低(<1 mg·kg-1)时,CaCl2提取态Cd含量基本随着土壤Cd的增加而增加,而当土壤Cd含量越高,CaCl2提取态Cd含量反而越低(图4).与岩溶区土壤不同的是,人为污染地区土壤Cd总量与CaCl2提取态Cd含量有较好的线性关系(图5).岩溶区CaCl2提取态Cd平均提取率为4.84%,也低于人为污染地区相应的土壤提取率平均值[22—24],说明研究区土壤Cd中活性态的组分占比较低.

图5

图5   人为污染区土壤Cd总量与提取态Cd含量相关图[22—23,27]

Fig.5   The correlation diagram of total concentraion of Cd and extracted Cd concentration in the soils from anthropogenic polluted area[22—23,27]


EDTA溶液可以模拟植物根部分泌的有机酸对重金属的螯合[28],除了溶解态,可交换态,EDTA还能提取部分有机结合态和碳酸盐态[13,29].其中可交换态的重金属易被生物利用,碳酸盐结合态及有机结合态可被生物利用,EDTA提取态含量代表着潜在的生物有效性组分.研究区土壤EDTA提取态Cd的含量平均值为0.84 mg·kg-1,提取率为52.86%,略低于工业污染区的EDTA提取态Cd含量1.22 mg·kg-1及其提取率65.48%[23].与CaCl2提取结果相比,EDTA提取的Cd含量与土壤金属总量具有更好的相关性(p<0.01,R2=0.96),随着土壤Cd总量增加,EDTA提取组分的Cd也随之增加,说明岩溶地区土壤中这些金属元素主要为强结合态(部分有机态和碳酸盐态等).

2.3 生物有效态Cd的影响因素

通过对CaCl2提取态Cd的影响因素进行分析(表2),发现土壤的CaCl2提取态Cd含量仅与pH呈显著负相关(p<0.01).当土壤偏酸性时(pH为5~6.5),岩溶区土壤Cd总量相对偏低,大部分低于土壤污染风险管控值,但氯化钙提取态Cd含量相对较高;当土壤pH>6.5,相比酸性土壤,土壤Cd总量偏高(高于土壤污染风险管控值),但氯化钙提取态Cd含量相对偏低(图4).

Li et al[23]研究中江苏工业污染地区水稻籽实Cd含量超过0.2 mg·kg-1(食品安全国家标准限量值[30])时,土壤CaCl2提取含量的平均值为0.35 mg·kg-1;当水稻籽实Cd含量低于0.2 mg·kg-1时,土壤CaCl2提取的含量平均值为0.07 mg·kg-1[22].Zhang et al[31]研究中浙江硫化物矿污染区水稻籽实Cd含量超过0.2 mg·kg-1时,土壤CaCl2提取含量是平均值为0.05 mg·kg-1;当水稻籽实Cd含量低于0.2 mg·kg-1时,土壤CaCl2提取含量的平均值为0.014 mg·kg-1.

研究区土壤CaCl2提取态Cd含量大于0.05 mg·kg-1的样品pH均小于6.5(图6),提取率为11.96%;而当土壤pH>6.5,尽管土壤Cd含量相对较高,但CaCl2提取态Cd含量均低于0.05 mg·kg-1,此时提取率为2.52%.

图6

图6   研究区土壤pH,Cd总量及CaCl2提取态Cd含量相关关系图

Fig.6   Correlation diagram of soil pH,total concentrations of Cd and CaCl2⁃extracted Cd in soils of the study area

The blue line is the screening value in Soil environmental quality Risk control standard for soil contamination of agricultural land and the red line is the control value[18].


土壤Cd的表生地球化学行为主要受土壤中Cd的吸附与解吸控制.土壤中Cd吸附分为:(a)非专性吸附,(b)专性吸附,(c)无机或有机配体间接吸附和(d)沉淀或共沉淀[32].其中非专性吸附是指Cd通过静电作用被吸引固定在土壤胶体的负电荷点位上,可与其他阳离子发生置换反应,该部分Cd是不稳定的.专性吸附是指金属阳离子以共价键形式与配位体相结合而固定在土壤颗粒上,不易与其他阳离子发生交换.此外Cd也可以形成共沉积产物及难溶性表面沉积物[33].

pH是影响土壤Cd吸附的最主要因素,也是Cd生物有效性的最重要因素[34].在弱碱性⁃弱酸性土壤中,重金属的活动性都会减弱[35].Sparks et al[36]研究发现随着pH上升,Cd吸附量呈S型增加.Vasconcelos et al[37]研究了不同pH条件下高岭石对Cd的吸附,发现pH为7时,Cd作为外层络合物被吸附,pH为9时,以内层络合物为主.这说明土壤酸化不但可以降低Cd的吸附,也会将Cd从专性吸附改变为非专性吸附,从而使Cd的生物有效性增加.

研究区土壤Cd的CaCl2提取率与Na2O,SiO2,K2O呈显著正相关,与pH,CaO及Mn呈显著负相关(p<0.05).与CaCl2提取不同,土壤Cd的EDTA提取率受pH影响较小.当土壤偏酸性时,pH变化对Cd的CaCl2提取率影响较大(图7).当土壤为酸性土壤时(pH为5~6.5),岩溶区土壤Cd的CaCl2提取率随着pH升高而显著降低;当土壤酸碱度偏中性时(pH为6.5~7.5),斜率明显降低,CaCl2提取率变化较为平缓;当土壤偏碱性时(pH为7.5~8.5),相比中性土壤,CaCl2提取率略有降低.

图7

图7   土壤pH与Cd氯化钙提取率间的相关图

Fig.7   Correlation diagram of Cd extraction rate by CaCl2 and soil pH


土壤存在碳酸钙的情况下,pH较高,对Cd的吸附能力较大,在一定程度上降低土壤重金属的生物有效性.碳酸盐淋失后,土壤酸化导致重金属有效性增加.Wang et al[38]发现当土壤碳酸盐淋滤严重(碳酸盐浓度小于1%)时,在酸性土壤中生长的小麦籽实Cd含量相当于含碳酸盐土壤中(碳酸盐浓度大于1%)小麦籽实Cd含量的两倍.

碳酸盐是控制岩溶区土壤pH和生态风险的重要因素.石灰土中最初的碳酸盐矿物会随土壤酸化而淋失,土壤重金属总量降低,生物有效性增强,生态风险增高(图6).因此在土壤酸化严重的岩溶地质高背景地区,可补充天然石灰石提高土壤利用的安全性.

3 结 论

(1)研究区土壤中Cd,As,Cr,Cu,Zn和Zn存在不同程度的富集,其中Cd超标严重.与上部地壳相比,研究区土壤中Cd,As,Pb,Zn,Cr,Cu,Ni的平均值分别富集19.78,2.97,1.89,1.74,1.68,1.21和0.64倍,与广西灰岩中这些重金属的富集程度顺序基本一致,揭示岩溶区地质高背景土壤重金属的富集具有显著的母岩(碳酸盐岩)继承性.

(2)岩溶区土壤Cd的氯化钙提取的平均含量为0.04 mg·kg-1,平均提取率为4.84%,远低于人为污染(工矿业)区土壤Cd的平均提取率.EDTA提取态Cd的含量平均值为0.84 mg·kg-1,提取率为52.86%.与氯化钙提取不同,EDTA提取率受土壤pH影响较小.

(3)岩溶区土壤Cd的氯化钙提取态含量与土壤Cd总量没有明显的线性关系,主要受pH控制.当土壤pH>6.5时,虽然土壤Cd总量高于土壤污染风险管控值,但氯化钙提取态Cd含量偏低,生态风险低;但当土壤pH<6.5,土壤Cd总量相对偏低时(低于土壤污染风险管控值),氯化钙提取态Cd含量较高,生态风险较高.

参考文献

袁道光蔡桂鸿.

岩溶环境学

重庆重庆出版社19881-100.

[本文引用: 1]

Yuan D G,Cai G H.

The science of karst environment.

Chongqing:Chongqing Publishing House19881-100.

[本文引用: 1]

涂成龙张玉彪刘丛强.

典型岩溶区域主要土壤类型分布特征与表层土壤保有量估算

生态学杂志,201231(3):620-625.

[本文引用: 1]

Tu C L,Zhang Y B,Liu C Q,et al.

Distribution characteristics and surface soil–retaining amount of main soil types in typical Karst region.

Chinese Journal of Ecology201231(3):620-625.

[本文引用: 1]

朱德浩.

广西通志·岩溶志

南宁广西人民出版社20001-14.

[本文引用: 1]

王世杰季宏兵欧阳自远.

碳酸盐岩风化成土作用的初步研究

中国科学 (D辑)199929(5):441-449.

[本文引用: 1]

Wang S J,Ji H B,Ouyang Z Y,et al.

Preliminary study on weathering and pedogenesis of carbonate rock.

Science in China Series D:Earth Sciences199942(6):572-581.

[本文引用: 1]

BaizeDSterckemanT.

Of the necessity of knowledge of the natural pedo–geochemical background content in the evaluation of the contamination of soils by trace elements

Science of the Total Environment,2001264(1-2):127-139.

JacquatOVoegelinAJuillotFet al.

Changes in Zn speciation during soil formation from Zn⁃rich limestones

Geochimica et Cosmochimica Acta,200973(19):5554-5571.

Quezada–HinojosaR PFöllmiK BVerrecchiaEet al.

Speciation and multivariable analyses of geogenic cadmium in soils at Le Gurnigel,Swiss Jura Mountains

CATENA,201512510-32.

朱其清尹楚良唐丽华.

石灰岩土中微量元素的含量与分布

土壤学报,198421(1):58-69.

[本文引用: 1]

Zhu Q Q,Yin C L,Tang L H,et al.

Content and distribution of trace elements in limestone soils of China.

Acta Pedologica Sinica198421(1):58-69.

[本文引用: 1]

中国地质调查局.

中国耕地地球化学调查报告. (2015⁃06⁃25)

..

URL     [本文引用: 1]

Kabata–PendiasA.

Soil–plant transfer of trace elements⁃an environmental issue

Geoderma,2004122(2-4):143-149.

[本文引用: 1]

WearJ IEvansC E.

Relationship of zinc uptake by corn and sorghum to soil zinc measured by three extractants

Soil Science Society of America Journal,196832(4):543-546.

[本文引用: 1]

NovozamskyILexmondT MHoubaV J G.

A single extraction procedure of soil for evaluation of uptake of some heavy metals by plants

International Journal of Environmental Analytical Chemistry,199351(1-4):47-58.

[本文引用: 1]

谢学锦任天祥孙焕振.

中国地球化学图集

北京地质出版社20121-135.

[本文引用: 2]

Xie X J,Ren T X,Sun H Z.

Atlas of Chinese geochemistry.

Beijing:Geological Press20121-135.

[本文引用: 2]

广西地质调查院.

广西壮族自治区地层岩性分布图,2013

.

中华人民共和国国土资源部.

土地质量地球化学评价规范

DZ/T 0295⁃2016

.

[本文引用: 1]

Ministry of Land and Resources of the People's Republic of China

Determination of land Quality Geochemical Evaluation:DZ/T 0295–2016.

[本文引用: 1]

中国环境监测总站.

中国土壤元素背景值

北京中国环境科学出版社1990.

[本文引用: 1]

China National Environmental Monitoring Centre.

Background values of soil elements in China.

Beijing:China Environmental Science Press1990.

[本文引用: 1]

RudnickR LGaoS. 4.

1–Composition of the continental crust

In:Holland H D,Turekian K K. Treatise on Geochemistry. 2nd ed. OxfordElsevier20141-51.

[本文引用: 1]

生态环境部国家市场监督管理总局.

土壤环境质量 农用地土壤污染风险管控标准(试行)

GB 15618-2018

[本文引用: 2]

Ministry of Ecological Environment,State Administration of Market Supervision and Administration

Soil environmental quality Risk control standard for soil contamination of agricultural land. GB 15618-2018.

[本文引用: 2]

郑国东.

广西北部湾地区表层土壤重金属分布特征及其影响因素研究

硕士学位论文. 北京中国地质大学(北京)2016.

[本文引用: 5]

Zheng G D.

Factors influencing the distribution and accumulation of heavy metals in topsoil across Beibu Gulf of Guangxi.

Master Dissertation. Beijing:China University of Geosciences (Beijing)2016.

[本文引用: 5]

Quezada–HinojosaR PMateraVAdatteTet al.

Cadmium distribution in soils covering Jurassic oolitic limestone with high Cd contents in the Swiss Jura

Geoderma,2009150(3-4):287-301.

[本文引用: 1]

BiasioliMFabiettiGBarberisRet al.

An appraisal of soil diffuse contamination in an industrial district in northern Italy

Chemosphere,201288(10):1241-1249.

[本文引用: 1]

陈俊范文宏孙如梦.

新河污灌区土壤中重金属的形态分布和生物有效性研究

环境科学学报,200727(5):831-837.

[本文引用: 2]

Chen J,Fan W H,Sun R M,et al.

Bioavailability and species distribution of heavy metals in sewage⁃rrigated soil from Xinhe.

Acta Scientiae Circumstantiae200727(5):831-837.

[本文引用: 2]

LiT YYuanX YSongY Xet al.

Influence of heavy metals and nutrient concentrations on selenium geochemical behavior in soil⁃rice system

Polish Journal of Environmental Studies,201625(1):185-193.

[本文引用: 3]

王志楼.

典型矿区重金属污染特性及其土壤酶活性研究

硕士学位论文. 上海东华大学2010.

[本文引用: 1]

Wang Z L.

Characteristics of heavy metal pollution and soil enzyme activity in typical mining areas.

Master Dissertation. Shanghai:Donghua University2010.

[本文引用: 1]

Kabata⁃PendiasA.

Behavioural properties of trace metals in soils

Applied Geochemistry,19938(S2):3-9.

KumpieneJGiagnoniLMarschnerBet al.

Assessment of methods for determining bioavailability of trace elements in soils:A review

Pedosphere,201727(3):389-406.

许超夏北成秦建桥.

广东大宝山矿山下游地区稻田土壤的重金属污染状况的分析与评价

农业环境科学学报,200726(S1):549-553.

XuCXiaB CQinJ Qet al.

Analysis and evaluation on heavy metal contamination in paddy soils in the lower stream of Dabaoshan Area,Guangdong Province

Journal of Agro⁃Environment Science200726(S1):549-553.

GuoG LZhouQ XKovalP Vet al.

Speciation distribution of Cd,Pb,Cu,and Zn in contaminated Phaeozem in north⁃east China using single and sequential extraction procedures

Australian Journal of Soil Research,200644(2):135-142.

[本文引用: 1]

GuptaA KSinhaS.

Assessment of single extraction methods for the prediction of bioavailability of metals to Brassica juncea L

Czern. (var. Vaibhav) grown on tannery waste contaminated soil. Journal of Hazardous Materials,2007149(1):144-150.

[本文引用: 1]

中华人民共和国卫生部.

食品安全国家标准 食品中污染物限量

GB 2762-2012

[本文引用: 1]

Ministry of Health of the People's Republic of China. National food safety standard⁃food pollutant limit. GB2762-2012.

[本文引用: 1]

ZhangM KLiuZ YWangH.

Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice

Communications in Soil Science and Plant Analysis,201041(7):820-831.

[本文引用: 1]

LoganathanPVigneswaranSKandasamyJet al.

Cadmium sorption and desorption in soils:A review

Critical Reviews in Environmental Science and Technology,201242(5):489-533.

[本文引用: 1]

WangB LXieZ MChenJ Jet al.

Effects of field application of phosphate fertilizers on the availability and uptake of lead,zinc and cadmium by cabbage (Brassica chinensis L

.) in a mining tailing contaminated soil. Journal of Environmental Sciences,200820(9):1109-1117.

[本文引用: 1]

ShahidMDumatCKhalidSet al.

Cadmium bioavailability,uptake,toxicity and detoxification in soil⁃plant system

Reviews of Environmental Contamination and Toxicology,201724173-137.

[本文引用: 1]

McBrideM B.

Cadmium uptake by crops estimated from soil total Cd and pH

Soil Science,2002167(1):62-67.

[本文引用: 1]

SparkK MWellsJ DJohnsonB B.

Characterizing trace metal adsorption on kaolinite

European Journal of Soil Science,199546(4):633-640.

[本文引用: 1]

VasconcelosI FHaackE AMauriceP Aet al.

EXAFS analysis of cadmium(II) adsorption to kaolinite

Chemical Geology,2008249(34):237-249.

[本文引用: 1]

WangCLiWYangZ Fet al.

An invisible soil acidification:Critical role of soil carbonate and its impact on heavy metal bioavailability

Scientific Reports,2015512735.

[本文引用: 1]

/