1.State Key Laboratory for Mineral Deposits Research,Institute of Geo-Fluids,School of Earth Sciences and Engineering,Nanjing University,Nanjing,210023,China; 2.Chengdu University of Technology,School of Earth Sciences,Chengdu,610059,China
{{custom_authorNodes}}
{{custom_bio.content}}
{{custom_bio.content}}
{{custom_authorNodes}}
Collapse
History+
Published
2018-03-30
Issue Date
2018-03-30
Abstract
The Maoping tungsten deposit,as one of the largest deposits in southern Jiangxi province,comprises two types of ore-bodies,i.e. wolframite-quartz vein type ore-body and greisenized-granite disseminated type ore-body. In this paper,wolframite-quartz vein type ore-body was studied using prevailing fluid inclusion assemblage(FIA)method. Microthermometry and Laser Raman spectrum analysis were conducted on fluid inclusions in coexisting quartz and wolframite,respectively. Results show that the homogenization temperatures for primary inclusions in wolframite(type Iwa)are generally higher than those in quartz(type Ia),implying wolframite most likely formed earlier than most of the coexisting quartz. Wolframite and coexisting quartz have experienced different fluid processes in the hydrothermal system. Fluid immiscibility and fluid mixing take place in quartz but only simple cooling happens in wolframite. As infrared microthermometric studies of wolframite provide more pertinent information regarding ore formation,the principal tungsten depositional mechanism is simple cooling. Except the common presence of primary fluid inclusions in wolframite(type Iwa),we have found some secondary fluid inclusions in wolframite(type Iwb). Type Iwb inclusions in wolframite have homogenization temperature similar to type Ia inclusions in coexisting quartz,indicating that quartz-forming fluids were preserved as post-precipitation secondary inclusions in wolframite.
Chen Lili1,Ni Pei1*,Wang Guoguang1,Li Wensheng1,Yang Yulong2 .
Study on the fluid inclusion assemblages(FIA)from coexisting wolframite and quartz in Maoping tungsten deposit,southern Jiangxi province[J]. Journal of Nanjing University(Natural Sciences), 2018, 54(2): 336
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] Roedder E. Fluid inclusions. Mineralogical Society of America,Reviews in Mineralogy,1984,12:1-644. [2] Ni P,Wang X D,Wang G G,et al. An infrared microthermometric study of fluid inclusions in coexisting quartz and wolframite from Late Mesozoic tungsten deposits in the Gannan metallogenic belt,South China. Ore Geology Reviews,2015,65:1062-1077. [3] Wang G G,Ni P,Wang R C,et al. Geological,fluid inclusion and isotopic studies of the Yinshan Cu-Au-Pb-Zn-Ag deposit,South China:Implications for ore genesis and exploration. Journal of Asian Earth Sciences,2013,74:343-360. [4] Li L,Ni P,Wang G G,et al. Multi-stage fluid boiling and formation of the giant Fujiawu porphyry Cu-Mo deposit in South China. Ore Geology Reviews,2017,81:898-911. [5] Wilson A J,Cooke D R,Harper B L. The ridgeway gold-copper deposit:A high-grade alkalic porphyry deposit in the lachlan fold belt. New South Wales,Australia. Economic Geology,2003,98(8):1637-1666. [6] Landtwing M R,Pettke T,Halter W E,et al. Copper deposition during quartz dissolution by cooling magmatic-hydrothermal fluids:The bingham porphyry. Earth & Planetary Science Letters,2005,235(1-2):229-243. [7] Goldstein R H,Reynolds T J. Systematics of fluid inclusions in diagenetic minerals. Tulsa,Oklahoma:Society for Sedimentary Geology,1994,1-199. [8] Goldstein R H. Fluid inclusions in sedimentary and diagenetic systems. Lithos,2001,55(1):159-193. [9] 池国祥,卢焕章. 流体包裹体组合对测温数据有效性的制约及数据表达方法. 岩石学报,2008,24(9):1945-1953. (Chi G X,Lu H Z. Validation and representation of fluid inclusion microthermometric data using the fluid inclusion assemblage(FIA)concept. Acta Petrologic Sinica,2008,24(9):1945-1953. ) [10] 李 毅,杨 佑. 茅坪钨锡矿床基本地质特征. 矿产与地质,1991,5(4):284-292. (Li Y,Yang Y. Basic geological characteristics of tungsten-tin deposit in Maoping,Jiangxi province. Mineral Resources and Geology,1991,5(4):284-292. ) [11] 黄定堂. 茅坪钨锡矿床地质特征. 中国钨业,1999,(3):23-24. (Huang D T. Geological characteristics of tungsten-tin deposit in Maoping,Jiangxi province. China Tungsten Industry,1999,(3):23-24. ) [12] 王定生,陆思明,胡本语等. 江西茅坪钨锡矿床地质特征及成矿模式. 中国钨业,2011,26(2):6-11. (Wang D S,Lu S M,Hu B Y,et al. The geological characteristics and mineralization model of a tungsten-tin deposit. China Tungsten Industry,2011,26(2):6-11. ) [13] 朱明波,谭红艳,何登华等. 江西茅坪钨锡矿床花岗岩地球化学特征. 有色金属(矿山部分),2012,64(5):34-39. (Zhu M B,Tan H Y,He D H,et al. Geochemical characteristics of maoping tungsten-tin deposit granite in Jiangxi province. Nonferrous metals,2012,64(5):34-39. ) [14] 曾载淋,张永忠,朱祥培等. 赣南崇义地区茅坪钨锡矿床铼-锇同位素定年及其地质意义. 岩矿测试,2009,28(3):209-214. (Zeng Z L,Zhang Y Z,Zhu X P,et al. Re-Os istopic dating of molybdenite from the Maoping tungsten-tin deposit in Chongyi county of sothern Jiangxi province and its geological significance. Rock and Mineral Analysis,2009,28(3):209-214. ) [15] Feng C Y,Zeng Z L,Zhang D Q,et al. SHRIMP zircon U-Pb and molybdenite Re-Os isotopic dating of the tungsten deposits in the Tianmenshan-Hongtaoling W-Sn orefield,southern Jiangxi Province,China,and geological implications. Ore Geology Reviews,2011,43(1):8-25. [16] 郑跃鹏,喻铁阶,吴开华. 茅坪钨锡多金属矿床流体包裹体特征及地质意义. 矿产与地质,1991,5(4):311-317. (Zheng Y P,Yu T J,Wu K H. The characteristic and geological implication of fluid inclusions of Maoping Sn-W-polymetallic deposit. Mineral Resources and Geology,1991,5(4):311-317. ) [17] 胡东泉,华仁民,李光来等. 赣南茅坪钨矿流体包裹体研究. 高校地质学报,2011,17(2):327-336. (Hu D Q,Hua R M,Li G L,et al. Study on the Fluid Inclusions of Maoping Tungsten Deposit,Southern Jiangxi Province. Geological Journal of China Universities,2011,17(2):327-336. ) [18] 王旭东. 赣南石英脉型黑钨矿床成矿流体研究. 博士学位论文. 南京:南京大学,2010. (Wang X D. Study on the ore-forming fluids of wolframite-quartz-vein type tungsten deposits from southern Jiangxi province. Ph. D. Dissertation. Nanjing:Nanjing University,2010. ) [19] Zhao J H,Zhou M F,Yan D P,et al. Reappraisal of the ages of Neoproterozoic strata in South China:No connection with the Grenvillian orogeny. Geology,2011,39(4):299-302. [20] Zhou J C,Wang X L,Qiu J S. Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou,South China:Coeval arc magmatism and sedimentation. Precambrian Research,2009,170(1):27-42. [21] Faure M,Shu L,Wang B,et al. Intracontinental subduction:a possible mechanism for the Early Palaeozoic Orogen of SE China. Terra Nova,2009,21(5):360-368. [22] Wang G G,Ni P,Zhao K D,et al. Petrogenesis of the Middle Jurassic Yinshan volcanic-intrusive complex,SE China:Implications for tectonic evolution and Cu-Au mineralization. Lithos,2012,150(10):135-154. [23] Zhou X M,Sun T,Shen W Z,et al. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:A response to tectonic evolution. Episodes,2006,29(1):26-33. [24] 柳志青. 脉状钨矿床成矿预测理论. 北京:科学出版社,1980,1-150. (Liu Z Q. Metallogenic prediction theory of the vein tungsten deposit. Beijing:Since Press,1980,1-150. ) [25] 徐克勤,胡受奚,孙明志等. 华南钨矿床的区域成矿条件分析. 北京:地质出版社,1984. (Xu K Q,Hu S X,Sun M Z,et al. Regional metallogenic condition analysis of the tungsten deposits in South China. Beijing:Since Press,1984. ) [26] Hsu K C. Tungsten deposits of southern Kiang-si,China. Economic Geology,1943,38:431-474. [27] 韦星林. 赣南钨矿成矿特征与找矿前景. 中国钨业,2012,27(1):14-21. (Wei X L. The metallogenic features and ore-finding potentiality of the tungsten deposits in South Jiangxi Province. China Tungsten Industry,2012,27(1):14-21. ) [28] 徐克勤,孙 鼐,王德滋等. 华南花岗岩成因与成矿. 南京:南京大学出版社,1984,1-40. (Xu K Q,Sun N,Wang D Z,et al. Petrogenesis and metallogenic of granite in South China. Nanjing:Nanjing University Press,1984,1-40. ) [29] 陈 骏,王汝成,朱金初等. 南岭多时代花岗岩的钨锡成矿作用. 中国科学:地球科学,2014,56(1):111-121. (Chen J,Wang R C,Zhu J C,et al. Multiple-aged granitoids and related tungsten-tin mineralization in the Nanling Range,South China. Science China Earth Sicences,2014,56(1):111-121. ) [30] 曾载淋,朱祥培,许建祥. 赣南钨矿资源状况与资源远景展望. 中国钨业,2007,22(6):16-18. (Zeng Z L,Zhu X P,Xu J X. Tungsten Reserves of Southern Jiangxi Province and Prospecting Outlook. China Tungsten Industry,2007,22(6):16-18. ) [31] Tanelli G. Geological setting,mineralogy and genesis of tungsten mineralization in Dayu district,Jiangxi(People’s Republic of China):An outline. Mineralium Deposita,1982,17:279-294. [32] 中国有色金属工业总公司江西地质勘探二队. 江西省崇义县茅坪矿区钨锡矿详查地质报告,1989. (No.2 Team of Jiangxi Nonferrous Geological Prospecting. The general exploration report of Maoping tungsten-tin deposit in Chongyi county,Jiangxi province.1989. ) [33] Bodnar R J. Introduction to aqueous electrolyte fluid inclusions. Fluid Inclusions Analysis & Interpretation,2003,32:81-99. [34] 卢焕章,范宏瑞,倪 培等. 流体包裹体. 北京:科学出版社,2004,1-496. (Lu H Z,Fan H R,Ni Pei,et al. Fluid inclusions. Beijing:Since Press,2004,1-496. ) [35] Bodnar R J. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta,1993,57(3):683-684. [36] Collins P L. Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity. Economic Geology,1979,74(6):1435-1444. [37] Campbell A R,Panter K S. Comparison of fluid inclusions in coexisting(cogenetic?)wolframite,cassiterite,and quartz from St. Michael’s Mount and Cligga Head,Cornwall,England. Geochimica et Cosmochimica Acta,1990,54(3):673-681. [38] 黄惠兰,常海亮,李 芳等. 西华山钨矿床共生透明矿物与不透明矿物中流体包裹体的对比研究. 矿床地质,2012,31(6):1171-1183. (Huang H L,Chang H L,Li F,et al. A comparative study of fluid inclusions from coexisting transparent minerals and opaque minerals in Xihuashan tungsten deposit. Mineral Deposits,2012,31(6):1171-1183. ) [39] Wilkinson J. Fluid inclusions in hydrothermal ore deposits. Lithos,2001,55(1):229-272.