Integrated effect of goethite and gypsum on the anaerobic conversion of 2,4-dichlorophenol by dehalogenation bacteria
Kong Dianchao,Zhou Yuefei*,Chen Tianhu,Wang Jin,Li Bi
Author information+
{{custom_zuoZheDiZhi}}
About authors:
Laboratory of Nanominerals and Environmental Materials,School of Resources and Environmental Engineering,Hefei University of Technology,Hefei,230009,China
{{custom_authorNodes}}
{{custom_bio.content}}
{{custom_bio.content}}
{{custom_authorNodes}}
Collapse
History+
Published
2018-01-31
Issue Date
2018-01-31
Abstract
As respective representatives of iron oxides and sulfate minerals,goethite and gypsum were added into experimental systems with variable ratios to investigate their synergic effect on the anaerobic microbial conversion of 2,4-dichlorophenol(2,4-DCP).The results showed that no 2,4-DCP was adsorbed by the two minerals.Mass balance analysis noted that only the conversion of 2,4-DCP to 4-chlorophenol(4-CP)occurred in all experiments.In experiments without excessive carbon source,the conversion of 2,4-DCP was strongly restrained at the addition of goethite and gypsum,unrelated to mineral ratios.In experiments with the addition of sodium acetate,inhibitory effects by the two minerals on the conversion of 2,4-DCP were related to the ratio of goethite to gypsum,as the ratio decreased,the degradation rate and degree of 2,4-DCP declined gradually.Further analysis indicated that SO2-4 released from the gypsum restrained the conversion of 2,4-DCP by these mechanisms:(1)competing with dechlorination bacteria for organic substrates;(2)decreasing the anaerobic environmental redox potential and generating more S2-,which would be unfavorable for the growth of dechlorination bacteria.S2- could be partly fixed as iron sulfide by goethite,which would increase the systems’ redox potential and improve the growth conditions for dehalogenation bacteria.This study suggests that gypsum has potential inhibitory effects on the anaerobic transformation of the halogenated phenols under natural conditions while iron oxides could alleviate these effects to a certain extent.
Kong Dianchao,Zhou Yuefei*,Chen Tianhu,Wang Jin,Li Bi.
Integrated effect of goethite and gypsum on the anaerobic conversion of 2,4-dichlorophenol by dehalogenation bacteria[J]. Journal of Nanjing University(Natural Sciences), 2018, 54(1): 176
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] Olaniran A O,Igbinosa E O.Chlorophenols and other related derivatives of environmental concern:Properties,distribution and microbial degradation processes.Chemosphere,2011,83(10):1297-1306.doi:10.1016/j.chemosphere.2011.04.009. [2] Hassan H,Schulte-Illingheim L,Jin B,et al.Degradation of 2,4-dichlorophenol by Bacillus subtilis with concurrent electricity generation in microbial fuel cell.Procedia Engineering,2016,148:370-377.doi:10.1016/j.proeng.2016.06.473. [3] Ma Y B,Han J,Guo Y Y,et al.Disruption of endocrine function in in vitro H295R cell-based and in in vivo assay in zebrafish by 2,4-dichlorophenol.Aquatic Toxicology,2012,106-107:173-181.doi:10.1016/j.aquatox.2011.11.006. [4] Angelini V A,Orejas J,Medina M I,et al.Scale up of 2,4-dichlorophenol removal from aqueous solutions using Brassica napus hairy roots.Journal of Hazardous Materials,2011,185(1):269-274.doi:10.1016/j.jhazmat.2010.09.028. [5] Zhang X N,Huang W M,Wang X,et al.Biofilm-electrode process with high efficiency for degradation of 2,4-dichlorophenol.Environmental Chemistry Letters,2011,9(3):383-388.doi:10.1007/s10311-010-0290-2. [6] Nezamzadeh-Ejhieh A,Ghanbari-Mobarakeh Z.Heterogeneous photodegradation of 2,4-dichlorophenol using FeO doped onto nano-particles of zeolite P.Journal of Industrial and Engineering Chemistry,2015,21:668-676.doi:10.1016/j.jiec.2014.03.035. [7] Arora P K,Bae H.Bacterial degradation of chlorophenols and their derivatives.Microbial Cell Factories,2014,13(1):31.doi:10.1186/1475-2859-13-31. [8] van Agteren M H,Keuning S,Janssen D B.Handbook on biodegradation and biological treatment of hazardous organic compounds.New York:Kluwer Academic Publishers,1998.doi:10.1007/978-94-015-9062-4. [9] 韩方岸,胡 云,吉文亮等.长江江苏段主要城区水源有机污染物分布研究.实用预防医学,2009,16(1):3-8.(Han F A,Hu Y,Ji W L,et al.Study on distribution of organic pollutants of Yangtze River water in main cities of Jiangsu.Practical Preventive Medicine,2009,16(1):3-8.) [10] 董 军,李向丽,栾天罡等.珠江口地区沉积物中酚类物质污染及其生态安全评价.安全与环境学报,2009,9(5):113-116.(Dong J,Li X L,Luan T G,et al.Phenol pollution in the sediments of the Pearl River estuary area and its potential risk assessment to the eco-security.Journal of Safety and Environment,2009,9(5):113-116.) [11] 李晓敏,李永涛,李芳柏等.有机氯脱氯转化的铁还原菌与铁氧化物界面的交互反应.科学通报,2009,54(13):1880-1884.(Li X M,Li Y T,Li F B,et al.Interactively interfacial reaction of iron-reducing bacterium and goethite for reductive dechlorination of chlorinated organiccompounds.Chinese Science Bulletin,2009,54(16):2800-2804.) [12] Bae S,Lee W.Enhanced reductive degradation of carbon tetrachloride by biogenic vivianite and Fe(Ⅱ).Geochimica et Cosmochimica Acta,2012,85:170-186.doi:10.1016/j.gca.2012.02.023. [13] Aulenta F,Beccari M,Majone M,et al.Competition for H2 between sulfate reduction and dechlorination in butyrate-fed anaerobic cultures.Process Biochemistry,2008,43(2):161-168.doi:10.1016/j.procbio.2007.11.006. [14] Barton L L.Sulfate-reducing bacteria.Boston,MA,USA:Springer,1995.doi:10.1007/978-1-4899-1582-5. [15] Yue Z B,Liu R H,Yu H Q,et al.Enhanced anaerobic ruminal degradation of bulrush through steam explosion pretreatment.Industrial & Engineering Chemistry Research,2008,47(16):5899-5905.doi:10.1021/ie800202c. [16] Boyle A W,Knight V K,Hggblom M M,et al.Transformation of 2,4-dichlorophenoxyacetic acid in four different marine and estuarine sediments:effects of sulfate,hydrogen and acetate on dehalogenation and side-chain cleavage.FEMS Microbiology Ecology,1999,29(1):105-113.doi:10.1111/j.1574-6941.1999.tb00602.x. [17] Zanaroli G,Balloi A,Negroni A,et al.A Chloroflexi bacterium dechlorinates polychlorinated biphenyls in marine sediments under in situ-like biogeochemical conditions.Journal of Hazardous Materials,2012,209-210:449-457.doi:10.1016/j.jhazmat.2012.01.042. [18] Wu C Y,Zhuang L,Zhou S G,et al.Fe(Ⅲ)-enhanced anaerobic transformation of 2,4-dichlorophenoxyacetic acid by an iron-reducing bacterium Comamonas koreensis CY01.FEMS Microbiology Ecology,2010,71(1):106-113.doi:10.1111/j.1574-6941.2009.00796.x. [19] Klausen J,Troeber S P,Haderlein S B,et al.Reduction of substituted nitrobenzenes by Fe(II)in aqueous mineral suspensions.Environmental Science & Technology,1995,29(9):2396-2404.doi:10.1021/es00009a036. [20] Chen Y C,Zhan H Y,Chen Z H,et al.Coupled anaerobic/aerobic biodegradation of 2,4,6 trichlorophenol.Journal of Environmental Sciences,2003,15(4):469-474.doi:10.3321/j.issn:1001-0742.2003.04.006. [21] Chen Y,Cheng J J,Creamer K S.Inhibition of anaerobic digestion process:a review.Bioresource Technology,2008,99(10):4044-4064.doi:10.1016/j.biortech.2007.01.057. [22] Cao J Y,Zhang G J,Mao Z S,et al.Influence of electron donors on the growth and activity of sulfate-reducing bacteria.International Journal of Mineral Processing,2012,106-109:58-64.doi:10.1016/j.minpro.2012.02.005.