School of Science,Nantong University,Nantong,226019,China
{{custom_authorNodes}}
{{custom_bio.content}}
{{custom_bio.content}}
{{custom_authorNodes}}
Collapse
History+
Published
2017-08-02
Issue Date
2017-08-02
Abstract
In this paper,we constructed a dissipative uniaxial anisotropic metamaterial,in which the components of the permittivity and the permeability tensor were varying with the frequency.Then,the effective negative refractive index of the uniaxial anisotropic metamaterial,and the Goos-Hnchen(GH)shift on the surface of anisotropic quasi-left-handed meterial was studied in detail.The expressions of GH shift and penetration depth were given for transverse electric(TE)and transverse magnetic(TM)incident wave.The numerical simulation of the TE incident wave shows that the anisotropic metamaterial can be the quasi-left-handed material with negative refractive index(NI-QLHM)as the frequency is between 4 GHz and 6 GHz for μz<0(i.e.,the relative permeability of the uniaxial material parallel to the optical axial is negative).Moreover,the smaller of the permeability component |μz|,the easier to realize the total reflection in the frequency region of the NI-QLHM.And with increasing the frequency,the critical angle decreases,thus the region of incident angle corresponding to the total reflection increases,which leads to the decrease of the effective refractive index of the NI-QLHM.In what follows,we investigated the GH shifts and the penetration depth of the NI-QLHM.The penetration depth corresponds with the GH shifts,generally,the larger the penetration depth is,the greater the GH shifts are.Meanwhile,the GH shifts of the NI-QLHM are always negative,which is contrary to the ordinary material and is the unique physical property of the NI-QLHM.In the end,the influences of the frequency and the incident angle on the GH shifts and the penetration depth were discussed.The numerical results show that with increasing the frequency,the GH shifts decrease for the same of the incident angle,which means that with decreasing the refractive index,the GH shifts also decrease.It can be concluded that the negative GH shifts can be adjusted by changing the frequency and the angle of incidence
Huang Yanyan,Yu Zhongwei*,Ji Zhengyuan,Qian Yingjia.
The Goos-Hnchen shift on the surface of anisotropic metamaterials[J]. Journal of Nanjing University(Natural Sciences), 2017, 53(4): 708
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] Veselago V G.The electrodynamics of substances with simultaneously negative values of ε and μ.Soviet Physics Uspekhi,1968,10(4):509-514. [2] Shelby R A,Smith D R,Schultz S.Experimental verification of a negative index of refraction.Science,2001,292(5514):77-79. [3] Smith D R,Pendry J B,Wiltshire M C K.Metamaterials and negative refractive index.Science,2004,305(5685):788-792. [4] Liu Y H,Zhou X,Song K,et al.Quasi-phase-matching of the dual-band nonlinear left-handed metamaterial.Applied Physics Letters,2014,105(20):201911. [5] Kaina N,Lemoult F,Fink M,et al.Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials.Nature,2015,525(7567):77-81. [6] Lan S F,Kang L,Schoen D T,et al.Backward phase-matching for nonlinear optical generation in negative-index materials.Nature Materials,2015,14(8):807-811. [7] Kuramochi E,Taniyama H,Tanabe T,et al.Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings.Optics Express,2010,18(15):15859-15869. [8] Gan L,Liu Y Z,Li J Y,et al.Ray trace visualization of negative refraction of light in two-dimensional air-bridged silicon photonic crystal slabs at 1.55 μm.Optics Express,2009,17(12):9962-9970. [9] 李志远,甘 霖.二维硅基平板光子晶体器件.光学学报,2011,31(9):0900119.(Li Z Y,Gan L.Two-dimensional silicon photonic crystal slab devices.Acta optica sinica,2011,31(9):0900119.) [10] Goos F,Hnchen H.Ein neuer und fundamentaler versuch zur totalreflexion.Annalen der Physik,1947,436(7-8):333-346. [11] Berman P R.Goos-Hnchen shift in negatively refractive media.Physical Review E,2002,66(6):067603. [12] Lakhtakia A.On planewave remittances and Goos-Hnchen shifts of planar slabs with negative real permittivity and permeability.Electromagnetics,2003,23(1):71-75. [13] Shadrivov I V,Zharov A A,Kivshar Y S.Giant Goos-Hnchen effect at the reflection from left-handed metamaterials.Applied Physics Letters,2003,83(13):2713-2715. [14] Kong J A,Wu B I,Zhang Y.Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability.Applied Physics Letters,2002,80(12):2084-2086. [15] Chen X,Li C F.Lateral shift of the transmitted light beam through a left-handed slab.Physical Review E,2004,69(6):066617. [16] 王政平,王 成,张振辉等.单轴各向异性左手材料的电磁特性.哈尔滨工程大学学报,2008,29(4):432-436.(Wang Z P,Wang C,Zhang Z H,et al.Electromagnetic characteristics of uniaxially anisotropic left-handed material.Journal of Harbin Engineering University,2008,29(4):432-436.) [17] Huang Y Y,Gao L.Effective negative refraction in anisotropic layered composites.Journal of Applied Physics,2009,105(1):013532. [18] 姜永远,张永强,时红艳等.单轴各向异性左手介质表面的Goos-Hnchen位移.物理学报,2007,56(2):798-804.(Jiang Y Y,Zhang Y Q,Shi H Y,et al.The Goos-Hnchen shift on the surface of uniaxially anisotropic left-handed materials.Acta Physica Sinica,2007,56(2):798-804.) [19] Tang T T,He X J,Ma W Y,et al.Tunable lateral shift in a prism-waveguide system with biaxially anisotropic metamaterial.Optik,2014,125(21):6441-6444. [20] Tang T T,He X J,Liu W L.Large lateral shift in a multi-layer waveguide with indefinite media.Optik,2014,125(21):6459-6461.